Что такое сублимация и десублимация

Лекция «Сублимация и десублимация. Плавление и кристализация»

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Плавление и кристаллизация. Понятие о фазе вещества. Сублимация и десублимация.

Кристаллизация – это переход вещества в кристаллическое состояние из жидкого, или газообразного, или аморфного состояния.

Кристаллизация является фазовым переходом, происходит с выделением тепла, но при постоянной температуре. Примеры кристаллизации: замерзание воды (переход из жидкой фазы в кристаллическую), образование инея (переход из газообразной фазы в кристаллическую).

Плавление кристаллического вещества – это переход из кристаллической фазы в жидкую.

Процесс плавления кристаллического вещества происходит с поглощением тепла, но температура остается постоянной, пока плавление не завершится. Пример плавления кристаллического вещества – таяние льда. Смесь снега и льда сохраняет температуру 0° С, пока весь лед не растает.

Фазовые переходы на диаграмме температуры и давления

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Кристаллизация и затвердевание: в чем разница?

Твердые вещества могут не быть кристаллическими. Например, стекло и стеклоподобные аморфные вещества постепенно затвердевают при остывании; у них нет явно выраженной точки фазового перехода. Плавление стекла тоже происходит в некотором диапазоне температур, зависящем от химического состава и наличия примесей.
Отличие кристаллизации от затвердевания – в наличии фазового перехода, во время которого сохраняется постоянная температура:

если тепло не подводить, то жидкая и твердая фазы будут оставаться в равновесии;

если тепло поступает, то кристаллы будут плавиться, при сохранении температуры фазового перехода;

если тепло отводить, то происходит рост кристаллов, температура фазового перехода сохраняется, пока вся жидкая фаза не перейдет в кристаллическую.

Например, смесь воды со льдом в жаркий день сохраняет нулевую температуру, пока весь лед не растает. Поступающее тепло увеличивает внутреннюю энергию за счет приобретения молекулами дополнительных степеней свободы, но температура сохраняется прежняя до того, как лед полностью растает.

Фазовый переход в твердом веществе между двумя кристаллическими состояниями

Иначе ведет себя углерод. У него несколько фазовых переходов. Из жидкой формы, при отводе тепла, он переходит в кристаллическую фазу – графит; при высоком давлении более 120 000 атм. жидкий углерод кристаллизуется в алмаз.
Кроме того, есть фазовый переход между двумя твердыми кристаллическими фазами: графитом и алмазом.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

На рисунке красной линией показана диаграмма фазового перехода между алмазом и графитом. Температура фазового перехода зависит от давления, процессы, происходящие в твердом теле, аналогичны кристаллизации воды: если тепло подводить, то алмаз переходит в графит; если тепло отводить при соответствующем высоком давлении, то происходит переход, кристаллизация графита в алмаз.
Можно видеть, что переходы между алмазом и графитом совершаются при высоких температурах и давлениях, а при нормальном давлении и температуре алмаза вроде бы и не должно быть. Действительно, при низком давлении графит нельзя превратить в алмаз. Но если алмаз образовался под воздействием высокого давления, при охлаждении и уменьшении давления он сохраняет свою структуру: это метастабильное состояние. Действительно, из всех кристаллов алмаз самый нестойкий: при нагревании до 1400°С он превращается в графит – устойчивую при нормальном давлении фазу.

Кристаллизация жидких кристаллов

Есть вещества, имеющие несколько кристаллических фаз в твердом состоянии; но есть целый класс веществ, имеющих несколько фазовых переходов в жидком состоянии: это вещества, раствор или расплав которых образует жидкие кристаллы.
Жидкие кристаллы имеют для нас важнейшее значение. Живые ткани построены из органических молекул, частично упорядоченных; то есть все живые существа состоят из жидких кристаллов.
Жидкие кристаллы – это частично упорядоченные двумерные или одномерные структуры. Они стабильны в узком диапазоне температур, являются промежуточным состоянием между кристаллической и жидкой фазами. Переход от трехмерной кристаллической решетки к двумерной или одномерной структуре происходит при температуре фазового перехода; после того, как весь образец перейдет в жидкокристаллическое состояние, температура начинает повышаться, и повышается до значения, соответствующего следующему фазовому переходу. В конце концов частично упорядоченная структура переходит в жидкую фазу, при температуре соответствующего фазового перехода.

Сублимация и десублимация.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой.

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Мы ощущаем запах, образующийся при испарении твёрдого вещества мыла. То есть твердое тело превращается в пар.

ТВ. ТЕЛО Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация ПАР

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией.

ПАР Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация ТВ.ТЕЛО

Источник

Сублимация и десублимация

Вы будете перенаправлены на Автор24

Перед тем как рассмотреть процессы сублимации и десублимации вещества стоит обратить ваше внимание на то, что эти взаимно обратные процессы являются фазовыми переходами. Соответственно, их можно рассматривать, применяя физические и математические методы, используемые для описания всех фазовых переходов. В этой связи, напомним вам, что такое фазовый переход и чем фазовые переходы отличаются.

Фазовые переходы

Фазой называют состояние вещества, находящегося в термодинамическом равновесии с другими равновесными состояниями этого же вещества, но обладающее иными физическими свойствами.

Допустим, что в закрытом сосуде находится вода. Над водой присутствует воздух в смеси с водяными парами. Значит, мы имеем в сосуде двухфазную систему. Опустим в этот сосуд кусок льда, получим систему из трех фаз.

Во многих случаях словом «фаза» обозначают агрегатное состояние вещества, но следует иметь в виду, что понятие «фаза» шире. В рамках одного агрегатного состояния вещество может существовать в нескольких фазах, которые различны по свойствам, строению и т.д. Так для льда можно различать пять разных фаз.

Фазовым переходом называют переход вещества из одной фазы в другую.

Фазовый переход всегда сопровождается изменением свойств вещества. Изменение агрегатного состояния вещества – фазовый переход. Изменение состава вещества относят к фазовым переходам, примером такого перехода может служить модификация его кристаллического строения.

Виды фазовых переходов

Выделяют два рода фазовых переходов:

Фазовым переходом первого рода является переход, который происходит при выделении или поглощении теплоты (теплоты фазового перехода). Фазовый переход первого рода протекает при следующих условиях:

Готовые работы на аналогичную тему

Процесс плавления твердого тела относят к фазовым переходам первого рода. В этом процессе телу передают теплоту, которая расходуется на разрушение кристаллической решетки, при этом температура тела неизменна. В таком переходе упорядоченная кристаллическая решетка изменяется, вещество превращается в жидкость, степень беспорядка возрастает, что в свою очередь приводит к увеличению энтропии.

Фазовые переходы второго рода происходят без поглощения или выделения теплоты. В этих переходах:

В соответствии с гипотезой Ландау фазовые переходы второго рода объясняются тем, что изменяется симметрия системы. К фазовому переходу второго рода можно отнести превращение ферромагнетиков в парамагнетики при некоторых давлениях и температурах, переход металлов при температуре около 0К в сверхпроводники.

Сублимация и десублимация – фазовые переходы первого рода

Нагревая твердые тела, мы можем наблюдать процесс их плавления и далее, испарения жидкости. При уменьшении температуры идет обратный процесс. Однако иногда с ростом температуры кристаллического вещества, оно не плавится, а сразу испаряется. Важным параметром в таком случае является не только температура, но и величина давления над поверхностью твердого тела.

В твердом теле присутствуют молекулы, имеющие энергию достаточную для преодоления притяжения, действующего со стороны других молекул. Эти «энергичные» молекулы могут оторваться от поверхности твердого тела и оказаться в окружающем пространстве.

Процесс перехода твердого состояния вещества в газообразную фазу, без перехода его в жидкость, называют сублимацией или возгонкой.

Возгонка происходит при определенной температуре и давлении и сопровождается поглощением теплоты. Сублимация является фазовым переходом первого рода.

Процесс сублимации сопровождается увеличением внутренней энергии системы. При кристаллической упаковке частицы совершают колебания около положений равновесия. Расстояния между ними отвечают минимуму энергии взаимодействия при заданной температуре тела. В процессе сублимации пространственная решетка подвергается разрушению, расстояния между частицами увеличиваются, это приводит к увеличению энергии взаимодействия между ними. При сублимации твердого вещества необходимо подвести к нему некоторое количество энергии, которое называют теплотой сублимации (теплотой фазового перехода).

В ходе сублимации изменяется энергия каждой молекулы, следовательно, чем больше молекул имеется в теле, тем большие затраты энергии происходят при фазовом переходе.

Принимая во внимание, что:

Расстояния между частицами при сублимации становятся большими приблизительно в десять раз, чем в твердом состоянии. Тогда как при плавлении вещества расстояния между молекулами изменяются не очень существенно, относительно расстояний в кристаллическом теле. Следовательно, удельная теплота плавления значительно меньше удельной теплоты возгонки.

При увеличении давления температура сублимации увеличивается.

Десублимация – процесс обратный возгонке. При десублимации кристаллизация происходит из газообразного состояния без перехода вещества в жидкую фазу. При десублимации теплота выделяется.

Диаграмма перехода кристалл – газ

Зависимость давления насыщенного пара ($p$) над кристаллическим веществом в процессе сублимации можно записать при помощи выражения:

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Рисунок 1. График. Автор24 — интернет-биржа студенческих работ

При увеличении температуры кристалл становится газом. Увеличение давления приводит к тому, что газ десублимирует и переходит в твердую фазу. Диаграмма фазового перехода кристалл – газ является аналогичной диаграмме перехода жидкость – газ. Точки, находящиеся ниже и правее кривой (что соответствует меньшему давлению и более высокой температуре), говорят о том, что вещество находится в состоянии газа. Из диаграммы (рис.1) следует, что состояния, описываемые параметрами, находящимися выше и левее кривой (высокое давление и низкая температура) относятся к кристаллическому состоянию.

Источник

Основные агрегатные состояния вещества

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Агрегатные состояния вещества

Чтобы разобраться с тем, какими бывают агрегатные состояния, предлагаю по ходу чтения статьи заполнять таблицу.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Лед, вода и водяной пар — это все три агрегатных состояния одного вещества. Лед — твердое состояние, вода — жидкая, пар — газообразное. Для каждого вещества существует три состояния.

Твердое состояние

Его очень легко представить — это любой предмет, который мы встречаем в жизни. В этом состоянии тело сохраняет форму и объем. Расстояние между молекулами, приблизительно равно размеру самих молекул, которые, в свою очередь, расположены очень структурированно.

Такая структура называется кристаллической решеткой — из-за четкой структуры молекулам сложно двигаться, и они просто колеблются около своих положений.

Заполняем нашу табличку

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

Жидкое состояние

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан, то молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой — он почти не заваривается. А вот если налить кипяточку — чай точно будет готов.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

Газообразное состояние

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

С агрегатными состояниями разобрались, ура! Но до сих пор неясно, каким образом у каждого вещества их целых три, и как одно переходит в другое. Для этого узнаем, что такое фазовые переходы.

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме — названия всех фазовых переходов:

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Переход из твердого состояния в жидкое — плавление;

Переход из жидкого состояния в твердое — кристаллизация;

Переход из газообразного состояния в жидкое — конденсация;

Переход из жидкого состояния в газообразное — парообразование;

Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды — в пар, и обратные действия, то мы получим очень информативный график.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Разбираемся по шагам. Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов).

После того, как лед нагрелся до температуры плавления, он начинает плавиться. Плавление происходит при постоянной температуре тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

Расправившись вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода — это значит, что ее температура кипения равна 100 градусам Цельсия.

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс аналогично плавлению происходит при постоянной температуре. Данный процесс нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение — при любой.

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода — можно пойти только обратно.

Первый шаг в обратную сторону — охлаждение до температуры кипения.

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед — 0 градусов. Кристаллизация также происходит при постоянной температуре.

После кристаллизации лед охлаждается.

С нагреванием и охлаждением все совсем просто — мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса [кг]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Плавление

Кристаллизация

Q — количество теплоты [Дж]

λ — удельная теплота плавления вещества [Дж/кг]

m — масса [кг]

Парообразование

Конденсация

Q — количество теплоты [Дж]

L — удельная теплота парообразования вещества [Дж/кг]

m — масса [кг]

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Решение задач по фазовым переходам

С теорией разобрались — а теперь давайте практиковаться!

Задачка раз. Температура медного образца массой 100 г повысилась с 20 °С до 60 °С. Какое количество теплоты получил образец? Удельную теплоёмкость меди считать равной 380 Дж/(кг умножить на °С)

Q = 380 * 0,1*(60-20) = 1520 Дж

Ответ: образец получил 1520 Дж

Задачка два. Какое количество теплоты необходимо для плавления 2,5 т стали, взятой при температуре плавления? Удельная теплота плавления стали λ=80кДж/кг. Теплопотерями пренебречь.

80 кДж/кг = 80000 Дж/кг

Q = 80000*2500 = 200 000 000 Дж = 200 МДж

Ответ: для плавления 2,5 т стали необходимо 200 МДж теплоты.

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

Примерчики из жизни🤓

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге — так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду — увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом — резкое похолодание приводит к десублимации воздуха.

Влажность воздуха: испарение и конденсация

Такие процессы, как испарение и конденсация, становятся более логичными и простыми, если их рассмотреть на примере влажности воздуха.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Любое количество пара в воздух не запихнешь, поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Как влажность влияет на человека

Для человека влажность очень важна, потому что мы состоим из воды на 90%. Если окружающей среде нечего испарять, она будет испарять нас. Поэтому при низкой влажности мы чувствуем сухость во рту, а при высокой — волосы впитывают влагу, разбухают и начинают виться. На этом принципе построены некоторые гигрометры — приборы для измерения влажности. Они так и называются — волосяные гигрометры. Только внутри не человеческий волос, а конский, но принцип от этого не меняется.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой, но при высокой влажности пот не может испариться. При испарении пота мы теряем избыточное тепло, а в данном случае этого не происходит.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно, а при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Влажностью можно управлять. Существуют мешочки с шариками адсорбентами, которые кладут в коробки с обувью, чтобы впитать лишнюю влагу. Чтобы окна не запотевали, можно насыпать в рамы соль, которая также впитает влагу. А если вам наоборот нужно больше влаги — берем увлажнитель воздуха (классная вещь!): он добавляет в воздух водяной пар.

Источник

7.6. Возгонка (сублимация) и десублимация

Возгонку применяют для дополнительной очистки небольших количеств вещества от малолетучих примесей или малолетучего вещества от легколетучих примесей. Важным преимуществом возгонки по сравнению с кристаллизацией того же вещества из раствора является исключение из процесса очистки растворителя, который часто должен быть очень чистым.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Простейший сублиматор состоит из химического стакана 4 (Рис. 138, а) с возгоняемым веществом и десублимационной воронки 2, через которую пропущена стеклянная трубка закрепленная на конце трубки воронки обрезком резинового шланга. Стакан нагревают на электрической плитке 5. Для увеличения скорости возгонки через трубку 1 подают из газометра (см. рис. 271) слабый поток необходимого газа или воздуха из любого микрокомпрессора. Газ (воздух) предварительно пропускают для удаления аэрозоля через фильтр Петрянова.

Пар возгоняемого вещества, увлеченный потоком газа, омывает внутреннюю поверхность воронки, образуя на ней кристаллы десублимата 3. Скорость потока газа следует регулировать. При большом потоке возрастает унос мелкодисперсной твердой фазы с поверхности нагреваемого вещества и десублимата. Таким же простым сублиматором является фарфоровая чашка 3 с возгоняемым веществом (рис. 138, б), накрытая воронкой 1 и нагреваемая на песочной бане 4. Для улучшения десублимации возгоняемого вещества 2 на внешнюю поверхность воронок накладывают влажную ткань или влажную фильтровальную бумагу (на рисунках они не показаны). Используют также воронки с охлаждающей рубашкой.

Рекомендуемые в ряде руководств сублиматоры, состоящие из колбы 2 (рис. 138, в) и пальчикового холодильника 7, на котором образуются кристаллы 3 десублимата, не имеют особых преимуществ перед рассмотренными выше сублиматорами с воронками. Трубки 4 и 5 служат для создания потока газа.

Пальчиковый пришлифованный холодильник часто трудно удалить из горла колбы из-за заедания шлифа продуктами возгонки. Поэтому лучше конец горла колбы не шлифовать, а оставить на нем небольшие канавки для выхода газа. Кроме того, при извлечении холодильника с достаточно толстым слоем десублимата 3 происходит потеря последнего из-за обдирания его внутренними стенками выходного отверстия колбы. Чтобы избежать такой потери десублимата, применяют более простой прибор, состоящий из колбы-холодильника 1 (рис. 138, г) с проточной водой и химического стакана 3 с возгоняемым веществом. Десублимат 2 образуется на отростке колбы.

Во всех рассмотренных выше типах сублиматоров возможен местный перегрев твердой фазы, вызывающий растрескивание кристаллов с появлением аэрозоля вещества, уносимого с паром.

устранения этого явления применяют сублиматоры с постоянной температурой нагрева вещества при помощи пара кипящей жидкости.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

В сублиматорах типа а (рис. 139) порошок загружают в трубку 8 после удаления головки с краном, холодильника 6 и колбо-нагревателя 7. Затем заливают необходимую жидкость в сосуд 5. вставляют холодильник и головку с трубками 7 и 2, стараясь не задеть газоподводной трубкой 1 слой порошка, и размешают сосуд 5 в колбонагревателе 7. Как только закипит жидкость, начинают пропускать воздух или инертный газ через трубку 1. регулируя скорость газа краном. Возгон 3 оседает в холодной части трубки 8. Диафрагма 4 служит для обеспечения равномерной толщины слоя десублимата на холодной части поверхности трубки 8 и повышения степени десублимации.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Количество получаемого десублимата растет с приближением охлаждающей поверхности к поверхности возгоняемого вещества, а увеличению скорости возгонки способствует применение вакуума со слабым потоком воздуха или другого газа.

Вакуум-сублиматор с пальчиковым холодильником 1 (рис. 140, а) состоит из сосуда 2 с лодочкой 4. Нагревание сосуда 2 осуществляют в трубчатой печи 5.

Вакуум-сублиматор с воздушным охлаждением (рис. 140, б) имеет широкую пробирку 7 со стеклянной трубкой 2, вмещающей лодочку 4 овального типа, плотно входящую в трубку 2 задней своей частью. Поэтому десублимат 3 собирается преимущественно в передней части трубки. После окончания возгонки лодочку извлекают из правого конца 5 трубки 2, не затрагивая возгон 3. Такой сублиматор позволяет очень быстро удалить возгон без загрязнения его исходным веществом.

Что такое сублимация и десублимация. Смотреть фото Что такое сублимация и десублимация. Смотреть картинку Что такое сублимация и десублимация. Картинка про Что такое сублимация и десублимация. Фото Что такое сублимация и десублимация

Для вакуумной возгонки порошка в токе инертного газа пригодно устройство Солтиса (рис. 141, а). Вещество 3 помещают на пластинку 4 из пористого стекла. Верхний конец сосуда 8 закрывают пробкой с капилляром 1, через который пропускают слабый ток инертного газа. Следуя за потоком газа, пар вещества проходит пористую пластинку 4 и осаждается на поверхности холодильника 5.

В вакуум-сублиматоре с защитной рубашкой 2 (рис. 141, 6) холодильником служит пробирка 1, заполненная охлаждающей смесью. Рубашка 2 имеет пористую стеклянную пластинку 4 которая препятствует загрязнению осаждающегося на пробирке 1 десублимата частицами исходного порошка, увлекаемыми его паром.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *