Что такое сумма в алгебре
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.
Сумма (математика)
Су́мма (лат. summa — итог, общее количество), результат сложения величин (чисел, функций, векторов, матриц и т. д. ). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:
В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.
Содержание
Определенная сумма
Это обозначение называют определённой (конечной) суммой по i от k до N.
Для удобства вместо иногда пишут
, где
— некоторое соотношение для
, таким образом
это конечная сумма всех
, где
Свойства определённой суммы
Примеры
3.
4.
5.
Неопределённая сумма
Неопределённой суммой по
называется такая функция
, обозначаемая
, что
.
Формула Ньютона-Лейбница
Если найдена неопределённая сумма , то
.
Этимология
Латинское слово summa переводится как «главный пункт», «сущность», «итог». С XV века слово начинает употребляться в современном смысле, появляется глагол «суммировать» (1489 год).
Это слово проникло во многие современные языки: сумма в русском, sum в английском, somme во французском.
Специальный символ для обозначения суммы (S) первым ввёл Эйлер в 1755 году. Как вариант, использовалась греческая буква Сигма Σ. Позднее ввиду связи понятий суммирования и интегрирования, S также использовали для обозначения операции интегрирования.
Литература
См. также
Полезное
Смотреть что такое «Сумма (математика)» в других словарях:
Сумма — Сумма: Сумма (математика) результат сложения. Сумма (перен., книжн.) (лат. summa) итог, общее количество. Примеры Денежная сумма. Сумма жанр научного или дидактического сочинения. Сумма российский холдинг. Сумма Ляхде … Википедия
Сумма ряда — Сумма числового ряда определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае что он расходится[1].… … Википедия
МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… … Философская энциклопедия
Математика в Древнем Египте — Данная статья часть обзора История математики. Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э. Древнейшие древнеегипетские математические тексты относятся к началу II… … Википедия
Математика Древнего Востока — История науки По тематике Математика Естественные науки … Википедия
МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера
Математика — I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия
Математика инков — Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия
Сложение (математика) — У этого термина существуют и другие значения, см. Сложение (значения). Сложение (прибавление) одна из основных операций (действий) в разных разделах математики, позволяющая объединить два объекта (в простейшем случае два числа). Более … Википедия
Ряд (математика) — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
Алгебраическая сумма
Когда пишут знак суммы (сигма, Σ) подразумевается именно алгебраическая сумма.
Алгебраической суммой множеств называют сумму Минковского этих множеств.
Алгебраическая сумма, при замене всех вычитаний сложениями, может быть представлена рациональными числами (положительными, отрицательными и равными нулю), а также числами, обозначенными буквами.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Хотя такие формулы не всегда существуют, было обнаружено множество формул суммирования, при этом некоторые из наиболее распространенных и элементарных из них перечислены в оставшейся части этой статьи.
СОДЕРЖАНИЕ
Обозначение
Обозначение заглавной буквы
Это читается как «сумма a i от i = m до n ».
Вот пример суммирования квадратов:
Часто встречаются обобщения этой нотации, в которых предоставляется произвольное логическое условие, и предполагается, что сумма берется по всем значениям, удовлетворяющим условию. Например:
Есть также способы обобщить использование многих сигма-знаков. Например,
Особые случаи
Можно суммировать менее 2 чисел:
Формальное определение
Суммирование может быть определено рекурсивно следующим образом:
Обозначения теории меры
Исчисление конечных разностей
Пример применения вышеуказанного уравнения следующий:
Аппроксимация определенными интегралами
и для любой убывающей функции f :
Для суммирования, в котором слагаемое задается (или может быть интерполировано) интегрируемой функцией индекса, суммирование можно интерпретировать как сумму Римана, входящую в определение соответствующего определенного интеграла. Поэтому можно ожидать, например, что
Идентичности
Общая идентичность
Степени и логарифм арифметических прогрессий
Индекс суммирования в показателях
Биномиальные коэффициенты и факториалы
Существует очень много тождеств суммирования, включающих биномиальные коэффициенты (целая глава Конкретной математики посвящена только основным методам). Вот некоторые из самых основных.
Используя биномиальную теорему
Вовлечение чисел перестановки
Другие
Гармонические числа
Темпы роста
Ниже приведены полезные приближения (с использованием тета-записи ):
Числа. Сложение чисел.
Сумма — итог складывания величин (чисел, функций, векторов, матриц и т.д.). Свойства для всякого случая – это свойства коммутативности, ассоциативности и дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение существует), т.е. выполнение соотношений:
В теории множеств суммой (или объединением) множеств является множество, в котором элементы – это все элементы слагаемых множеств, которое берутся без повторов.
Суммой s чисел будет итог складывания таких чисел:
. На примере, если складываем 2 числа a и b, то расписать можно так:
Свойства суммы чисел.
Основываясь на выше приведенных свойствах сложения натуральных чисел можно сделать вывод, что от перестановки мест слагаемых сумма не меняется.
Сложение отрицательных чисел (чисел с разными знаками). Правила.
Для сложения двух натуральных чисел чисел с разными знаками, нужно:
2) поставить перед результатом знак того слагаемого, у которого модуль больше.