Что такое суждение в логике кратко

Урок 4. Суждения и высказывания. Введение в силлогистику

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоВ прошлых уроках рассказывалось о том, как правильно работать с понятиями и определениями. Хотя операции над ними очень важны и встречаются повсеместно, сами по себе они ещё не составляют рассуждений. В этом уроке мы как раз приблизимся к теме того, как правильно рассуждать. Мы будем рассматривать рассуждения на примере силлогистики. Силлогистика – это самая древняя логическая система. Она была изобретена древнегреческим философом Аристотелем в IVвеке до н.э. До сих пор она остаётся одной из самых понятных, приближенных к естественному языку и лёгких для изучения логических систем. Одно из главных её достоинств – возможность применения в повседневных ситуациях без особых усилий.

Содержание:

Суждения и высказывания

Что такое рассуждение? Можно было бы сказать: вывод, умозаключение, размышление, доказательство и т.д. Всё это верно, но, пожалуй, самым очевидным ответом было бы: рассуждение – это последовательность суждений, которые в идеале должны быть связаны между собой согласно правилам логики. Поэтому обучение правильному рассуждению нужно начинать с того, что такое суждения и как ими корректно пользоваться.

Суждение – это мысль об утверждении или отрицании наличия некоторой ситуации в мире.

В естественном языке суждения передаются с помощью повествовательных предложений, или высказываний. Примеры суждений, выраженных в высказываниях: «Пришла осень», «Катя не знает английского языка», «Я люблю читать», «Трава зелёная, а небо голубое». Одно и то же суждение может быть выражено с помощь разных высказываний, в частности: «Небо голубое» и «The sky is blue» – разные высказывания, но суждение они выражают одно и то же, так как они передают одну и ту же мысль. Точно также высказывания «Никто не покидал дома» и «Все оставались дома» разные, но они передают одно суждение.

Поскольку высказывания посредством суждений фиксируют какое-то положение дел в мире, в отличие от понятий и определений, мы можем оценивать их с точки зрения их истинности и ложности. Так высказывание «Бил Гейтс основал компанию “Microsoft”» – истинное, а высказывание «Апельсины фиолетовые» – ложное.

Если вспомнить треугольник Фреге, то высказывание будет находиться на вершине, обозначающей знак, суждение будет составлять его смысл, а истина и ложь – значение.

Существует множество типов суждений и, соответственно, высказываний. Разные логические системы концентрируются на их разных аспектах. Силлогистика работает с так называемыми категорическими атрибутивными высказываниями. Категорические высказывания противопоставляются гипотетическим. Гипотетические высказывания говорят о возможности наличия или отсутствия какой-то ситуации в мире: «Возможно, пойдёт дождь». Категорические высказывания безапелляционно утверждают о том, что какая-то ситуация имеется или не имеется: «Пошёл дождь». Термин «атрибутивный» означает, что эти высказывания говорят о наличии либо отсутствии у предмета или класса предметов некоторого свойства. Примеры категорических атрибутивных высказываний: «Моя машина синего цвета», «Парк около нашего дома большой», «Никто не любит рыбий жир», «Некоторые люди считают, что они самые умные». Хотя на первый взгляд может показаться, что из-за концентрации именно на категорических атрибутивных высказываниях, применение силлогистики ограничено, это не так. Огромный пласт рассуждений не выходит за рамки подобных высказываний, а потому знания силлогистики оказывается достаточно для того, чтобы научиться размышлять логично и не давать ввести себя в заблуждение.

Состав и виды категорических атрибутивных высказываний

Категорические атрибутивные высказывания состоят из терминов, предицирующих связок и кванторов.

Термины делятся на субъект и предикат.

Предицирующие связки, как, возможно, вы помните из первого урока, это связки «есть» и «не есть». В естественном языке они могут выражаться с помощью разных слов и конструкций: «есть», «являться», «суть», «это», «выступать», знака тире, глаголов, либо вообще опускаться.

Кванторы – это слова, указывающие на количественные характеристики субъекта. Существует два вида кванторов: квантор общности («все», «каждый», «любой», «ни один», «никто») и квантор существования («некоторые», «не все», «какой-либо», «многие»). Также как и предицирующие связки, кванторы в естественной речи могут опускаться. Мы можем сказать: «Люди равны перед законом», подразумевая, что «Все люди равны перед законом»; или «Дети любят сладкое» – подразумевая, что «Многие дети любят сладкое». Зачастую лучше всего уточнить у вашего собеседника, какой именно квантор он имеет в виду, так как это будет сказываться на условиях истинности его высказываний.

Давайте разберём следующее высказывание: «Кошки мурлычут, когда им приятно». «Кошки» – это субъект, «существа, мурлычущие, когда им приятно» – это предикат. Также здесь присутствует невидимая связка «есть», которая соединяет субъект с предикатом, и невидимый квантор общности «все». Так, если записать это высказывание в соответствии с его логической формой, то получим: «Все кошки есть существа, которые мурлычут, когда им приятно». Благодаря этому примеру становится ясно, что прежде чем определять, истинно высказывание или ложно, нужно выявить его логическую форму и преобразовать исходное высказывание так, чтобы все четыре элемента (квантор, субъект, связка, предикат) были на своих местах.

В зависимости от свойств логических и нелогических терминов, входящих в состав категорических атрибутивных высказываний, их можно разделить на несколько видов.

Если мы скомбинируем эти виды между собой, то получается, что всего существует шесть видов категорических атрибутивных высказываний:

Условия истинности для категорических атрибутивных высказываний в традиционной силлогистике

Следует начать с того, что традиционная силлогистика накладывает два ограничения на используемые термины, а именно: они должны быть непусты и неуниверсальны, то есть если под термин не подпадает ни один объект из универсума рассмотрения или, наоборот, подпадают все объекты универсума, то они не могут быть предметом рассмотрения. Посмотрим на рисунки:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоЧто такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Первый рисунок изображает ситуацию, когда термин А пуст, поэтому весь квадратик (универсум рассмотрения) остался белым. Второй рисунок показывает случай, когда объём термина А совпадает с объёмом универсума рассмотрения, поэтому весь квадрат заштрихован. Последний рисунок репрезентирует термин А, который является непустым и в то же время неуниверсальным. Заштрихованая область соотвествует объёму А. Традиционная силлогистика работает только с терминами, которые соотвествуют третьему рисунку. Такое условие ставится для того, чтобы исключить из рассмотрения высказывания, которые невозможно оценить как истинные либо ложные. Возьмём высказывание: «Все дети Ивана лысые». Вроде бы с высказыванием всё впорядке, однако представьте, что у Ивана нет детей. Мы не можем в данном случае просто сказать, что высказывание ложное. Если назвать его ложным, то тем самым мы подразумеваем, что не все дети Ивана лысые, а это не так. В то же время мы не можем сказать, что оно истинное. Выход из этого затруднительного положения состоит как раз в том, чтобы указать на пустоту термина «дети Ивана». Поскольку у Ивана нет детей, этот термин пуст, и мы не можем построить с ним корректное высказывание.

Непустота и неуниверсальность термина будут определяться не только контекстом, но и выбранным универсумом рассмотрения. Если наш квадратик представляет собой универсум живых существ или материально существующих предметов, то, конечно, такие термины как «русалка», «хоббит», «дракон» и т.п. окажутся пустыми, и мы не сможем их рассматривать. Однако, если универсум рассмотрения – это мифологические или сказочные существа, то все эти термины перестают быть пустыми. То же самое верно и для универсальности. Термин «люди» может рассматриваться как универсальный, что исключает его из области традиционной силлогистики. Однако если мы хотим сказать «Сократ – человек», то в качестве универсума рассмотрения вполне можно взять живых существ. На универсуме живых существ, термин «люди» уже не будет универсальным.

Кроме того, нужно помнить, что субъект и предикат должны задаваться на одном и том же универсуме рассмотрения.

Теперь посмотрим, при каких условиях разные типы категориальных атрибутивных высказываний будут истинными. Для этого советуем ещё раз заглянуть в урок, посвящённый отношениям между понятиями. По большому счёту, субъект и предикат – это термины, представляющие некоторые понятия. Соответственно, если соединить эти понятия в одном предложении с помощью предицирующих связок и кванторов, то, чтобы узнать будут эти предложения истинными или ложными, достаточно посмотреть на диаграммы, иллюстрирующие отношения между этими двумя понятиями. Итак, преступим.

Единичноутвердительные высказывания формы «s есть P» истинны, только если термины s и P находятся в следующем отношении:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Другими словами, единичноутвердительные высказывания истинны, если точка, представляющая собой имя s, находится внутри кружочка, изображающего объём термина P. Например, возьмём высказывание «Лев Толстой проповедовал вегетарианство». «Лев Толстой» – это субъект, имя s. «Человек, проповедующий вегетарианство» – это предикат, термин P. Это высказывание истинно, так как точка s будет входить в объём термина P. Если же взять высказывание «Николай Гоголь – это великий русский композитор», то точка s, представляющая имя («Николай Гоголь»), не будет входить в объём термина P («великие русские композиторы»). Поэтому это высказывание ложно.

Единичноотрицательные высказывания, имеющие форму «s не есть P» истинны, если термины s и P находятся в следующем отношении:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Как видно из рисунка, здесь имеет место ситуация, прямо противоположная условиям истинности единичноутвердительных высказываний. Если точка, представляющая имя s, находится вне объёма термина P, то высказывание истинно. В обратном случае, оно ложно. Пример истинного единичноотрицательного высказывания: «Александр Пушкин никогда не был во Франции». Ложным единичноотрицательным высказыванием будет: «Иван Бунин не получил Нобелевскую премию по литературе».

Общеутвердительные высказывания формы «Все S есть P» истинны, если термины S и P находятся в одном из следующих отношений:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоЧто такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Первый рисунок изображает отношение равнообъёмности, второй – обратного подчинения. Если объёмы двух терминов совпадают (S и P делят один кружочек) или объём термина S полностью входит в объём термина P (кружочек S полностью включается в P), то общеутвердительное высказывание истинно. Если термины S и P находятся в каком-либо другом отношении, то общеутвердительные высказывания не могут быть истинными. В качестве иллюстрации истинных высказываний можно привести: «Все хвойные растения имеют шишки», «Все киты – это млекопитающие». Пример ложных высказываний: «Все политики – обманщики», «Все девушки мечтают выйти замуж за миллионера». В этих примерах термины, обозначающие субъект и предикат, не находятся ни в одном из указанных выше отношений.

Общеотрицательные высказывания, имеющие форму «Ни один S не есть P» истинны, только если термины S и P находятся в следующих отношениях:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоЧто такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

На первом рисунке представлено отношение противоречия, а на втором – соподчинения. Как видно, у S и P нет общих элементов, их объёмы не пересекаются. К примеру, истинными будут высказывания: «Ни один павлин не относится к числу певчих птиц», «Ни один человек младше восемнадцати лет не является совершеннолетним в России». Пример ложного высказывания: «Ни один гуманитарий не разбирается в математике». Высказывание ложно, так как термины «гуманитарий» и «люди, разбирающиеся в математике» не находятся ни в отношении противоречия, ни в отношении соподчинения.

Частноутвердительные высказывания формы «Некоторые S есть P» истинны, если термины S и P находятся в следующих отношениях:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоЧто такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Частноутвердительные высказывания будут ложными, только если термины S и P находятся в отношении противоречия или соподчинения: «Некоторые тракторы – это самолёты», «Некоторые ложные высказывания истинны».

Частноотрицательные высказывания типа «Некоторые S не есть P» истинны, если термины S и P находятся в следующих отношениях:

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоЧто такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Это отношения: пересечения, дополнительности, включения, противоречия и соподчинения. Очевидно, что первые три отношения совпадают с тем, что было верно и для частноутвердительных высказываний. Все они как раз представляют случаи, когда некоторые S есть P, и в то же время некоторые S не есть P. Примеры подобных истинных высказываний: «Некоторые здоровые люди не употребляют алкоголь», «Некоторые наши работники из категории младше сорока ещё не достигли возраста и двадцати пяти», «Некоторые деревья не являются вечнозелёными».

По тем же причинам, по которым отношения равнообъёмности и обратного подчинения представляли собой условия истинности для частноутвердительных высказываний, отношения противоречия и соподчинения будут верны для частноотрицательных высказываний. Из высказывания, имеющего форму «Некоторые S не есть P» нельзя логично вывести высказывание «Некоторые S есть P». Однако из высказывания «Все S не есть P» можно перейти к высказыванию «Некоторые S не есть P», так как на основании информации, которой мы обладаем обо всех элементах объёмов терминов S и P, можно сделать вывод и об их отдельных представителях. Поэтому верными будут высказывания: «Некоторые журналы не являются книгами», «Некоторые глупцы не являются умными» и т.п.

Частноотрицательные высказывания будут ложными, только если термины S и P находятся в отношениях равнообъёмности и обратного подчинения. Примеры ложных высказываний: «Некоторые рыбы не умеют дышать под водой», «Некоторые яблоки не являются фруктами».

Итак, мы выяснили, при каких условиях высказывания той или иной формы будут истинными и ложными. При этом стало понятно, что не всегда истинность и ложность высказываний с логической точки зрения совпадает с нашими интуитивными представлениями. Иногда одинаковые на первый взгляд высказывания оцениваются совершенно по-разному, так как за ними скрываются разные логические формы и, следовательно, разные отношения между входящими в них терминами. Эти условия истинности важно запомнить. Они пригодятся, когда в следующем уроке мы научимся складывать высказывания в цепочки рассуждений и будем пытаться найти такие формы умозаключений, которые будут всегда правильными.

Игра «Пересечение множеств»

В этом упражнении вам нужно внимательно прочитать текст задания и правильно расположить множества, соответствующие понятиям.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Упражнения

Прочитайте следующие категориальные атрибутивные высказывания. Определите, к какому типу они относятся. С помощью диаграмм покажите, истинны они или ложны.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Источник

Суждения это в логике? Сложные суждения примеры. Классификация.

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Суждения это в логике? Сложные суждения примеры. Классификация суждений. Структура суждений. Простые суждения, примеры. Логические формулы.

Здравствуйте, уважаемые читатели!

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Продолжаем публикацию цепочки статей, раскрывающих законы формальной логики. С первой частью Вы сможете познакомиться по ссылке: № 1. Статья «Понятие это в логике? Логика Аристотеля кратко и понятно!»

Сегодня мы рассмотрим суждения. Напоминаю, что основой для данной статьи послужила книга Гусев Д. А. «Краткий курс логики: Искусство правильного мышления».

Блок 1. Суждения. Что такое суждения?

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Суждения обладают набором свойств, которые в том числе отличают их от понятий.

1. Все суждения состоят из понятий, которые связаны между собой. Пример:

2. Все суждения выражаются в форме предложения. Однако не любое предложение является суждением. Вопросительные и восклицательные предложения не являются суждениями, потому что в них ничего не утверждается и не отрицается. Повествовательное предложение всегда содержит утверждение или отрицание. Поэтому суждение выражается повествовательным предложением. Вместе с тем существуют риторические предложения, которые могут быть и вопросительными, и восклицательными по форме, в то время как по смыслу что – либо утверждают или отрицают. Примеры:

3. Все суждения можно разделить на истинные или ложные. Истинным является суждение, отражающее достоверное событие. Понятие «достоверное событие» определено в теории информации. Теория информации базируется на теории вероятности и математической статистике. Важно понимать, что здесь мы переходим к аппарату математической логики. В противном случае истинность или ложность суждения становятся уязвимы для критики, поскольку объем знаний отдельного субъекта в большинстве случаев не позволяет точно определить истинность/ложность события достоверно. Пример:

Является это суждение ложным или истинным? Если менеджеры обычно продают на 1 млн. руб, то можно предположить, что суждение истинное. Однако, всегда остается вероятность того, что план продаж в 10 млн. руб. будет выполнен при случайном благоприятном стечении обстоятельств. И автор однажды столкнулся с таким «удивительным» событием, хотя математически ничего удивительного в этом нет.

В самых простых случаях, на бытовом уровне люди разделяют более-менее хорошо истинность/ложность суждений. Пример:

Если Вы получили такой опыт, что Вам оказались доступны к наблюдению первичные и вторичные половые признаки, то суждение будет истинным. Однако, если Вы делаете выводы на основании вторичных и третичных половых признаков, при этом не знаете, что такое трансгендерность, интерсексуальность, то можете допустить ошибку в своем суждении.

4. Все суждения могут быть сложными и простыми. Простые суждения с помощью союза объединяются в сложные.

Источник

Суждение

Суждение — форма мышления, в которой что-либо утверждается или отрицается о предмете, его свойствах или отношениях между предметами. Виды суждений и отношения между ними изучаются в философской логике.

Содержание

Простые и сложные суждения

Простые суждения — суждения, составными частями которых являются понятия. Простое суждение можно разложить только на понятия.

Сложные суждения — суждения, составными частями которых являются простые суждения или их сочетания. Сложное суждение может рассматриваться как образование из нескольких исходных суждений, соединенных в рамках данного сложного суждения логическими союзами (связками). От того, при помощи какого союза связываются простые суждения, зависит логическая особенность сложного суждения.

Состав простого суждения

Простое (атрибутивное) суждение — это суждение о принадлежности предметам свойств (атрибутов), а также суждения об отсутствии у предметов каких-либо свойств. В атрибутивном суждении могут быть выделены термины суждения — субъект, предикат, связка, квантор.

Состав сложного суждения

Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит, и любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизъюнктивные, импликационные, эквивалентные и отрицательные суждения.

Дизъюнктивные суждения образуются с помощью разделительных (дизъюнктивных) логических связок (аналогичных союзу «или»). Подобно простым разделительным суждениям, они бывают:

Импликационные суждения образуются с помощью импликации, (эквивалентно союзу «если …, то»). Записывается как Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике краткоили Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко. В естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня не одной тучи») и, в таком случае, означает конъюнкцию.

Конъюнктивные суждения образуются с помощью логических связок сочетания или конъюнкции (эквивалентно запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим). Записывается как Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко.

Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если только», «необходимо», «достаточно» (например: «Чтобы число делилось на 3, достаточно, чтобы сумма цифр, его составляющих, делилась на 3»). Записывается как Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко(у разных математиков по-разному, хотя математический знак тождества всё-таки Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко).

Отрицательные суждения строятся с помощью связок отрицания «не». Записываются либо как a

b, либо как a b (при внутреннем отрицании типа «машина не роскошь»), а также с помощью черты над всем суждением при внешнем отрицании (опровержении): «не верно, что …» (a b).

Классификация простых суждений

По качеству

По объёму

По отношению

По отношению между подлежащим и сказуемым

Что такое суждение в логике кратко. Смотреть фото Что такое суждение в логике кратко. Смотреть картинку Что такое суждение в логике кратко. Картинка про Что такое суждение в логике кратко. Фото Что такое суждение в логике кратко

Субъект и предикат суждения могут быть распределены (индекс «+») или не распределены (индекс «-»).

Суждения А (обще-утвердительные суждения) Распределяет свое подлежащее (S), но не распределяет свое сказуемое (P)

Объем подлежащего (S) меньше объема сказуемого (Р)

Объемы подлежащего и сказуемого совпадают

Суждения Е (обще-отрицательные суждения) Распределяет как подлежащее (S), так и сказуемое (P)

В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым

Суждения I (частно-утвердительные суждения) Ни подлежащие (S), ни сказуемые (P) не распределены

Часть класса подлежащего входит в класс сказуемого.

Суждения О (частно-отрицательные суждения) Распределяет свое сказуемое (Р), но не распределяет свое подлежащее (S) В этих суждениях мы обращаем внимание на то, что есть несовпадающего между ними (заштрихованная область)

таблица распределения подлежащего и сказуемого

Подлежащее (S)Сказуемое (P)
о-уАраспределенонераспределено
о-оЕраспределенораспределено
ч-уIнераспределенонераспределено
ч-оОнераспределенораспределено

Другие

1) S есть или А, или В, или С

2) или А, или В, или С есть Р когда в суждении остается место неопределенности

Если А есть В, то С есть D или Е есть F

если есть А, то есть а, или b, или с Прим: « Если кто желает получить высшее образование, то он должен учиться или в университете, или в институте, или в академии»

Модальность суждений

Модальные понятия, или модальности — понятия, выражающие контекстную рамку суждения: время суждения, место суждения, знание о суждении, отношение говорящего к суждению.

В зависимости от модальности выделяются следующие основные виды суждений:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *