Что такое величина в математике
Величина (математика)
Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.
Содержание
История
Ещё в «Началах» Евклида (3 в. до н. э.) были отчётливо сформулированы свойства величины, называемых теперь, для отличия от дальнейших обобщений, положительными скалярными величинами. Это первоначальное понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы и т. п. Каждый конкретный род величины связан с определённым способом сравнения физических тел или др. объектов. Например, в геометрии отрезки сравниваются при помощи наложения, и это сравнение приводит к понятию длины: два отрезка имеют одну и ту же длину, если при наложении они совпадают; если же один отрезок накладывается на часть другого, не покрывая его целиком, то длина первого меньше длины второго. Общеизвестны более сложные приёмы, необходимые для сравнения плоских фигур по площади или пространственных тел по объёму.
Свойства
В более общем смысле слова величинами называют векторы, тензоры и другие «не скалярные величины». Такие величины можно складывать, но отношение неравенства (а 0).
Так как система действительных положительных чисел удовлетворяет перечисленным выше свойствам 1-10, а система всех действительных чисел обладает всеми свойствами скалярных величин, то вполне законно сами действительные числа называть величинами. Это особенно принято при рассмотрении переменных величин. Если какая-либо конкретная величина, например длина l нагреваемого металлического стержня, изменяется во времени, то меняется и измеряющее её число х = l / lo (при постоянной единице измерения lo). Само это меняющееся во времени число х принято называть переменной величиной и говорить, что х принимает в какие-либо последовательные моменты времени t1, t2,… «числовые значения» X1, X2,… В традиционной математической терминологии говорить о «переменных числах» не принято. Однако логичнее такая точка зрения: числа, как и длины, объёмы и т. п., являются частными случаями величины и, как всякие величины, могут быть и переменными, и постоянными. Столь же законно и рассмотрение переменных векторов, тензоров и т. п.
Измерение величин
Величина — это то, что можно измерить. Такие понятия, как длина, площадь, объём, масса, время, скорость и т. д. называют величинами. Величина является результатом измерения, она определяется числом, выраженным в определённых единицах. Единицы, в которых измеряется величина, называют единицами измерения.
Для обозначения величины пишут число, а рядом название единицы, в которой она измерялась. Например, 5 см, 10 кг, 12 км, 5 мин. Каждая величина имеет бесчисленное множество значений, например длина может быть равна: 1 см, 2 см, 3 см и т. д.
Одна и та же величина может быть выражена в разных единицах, например килограмм, грамм и тонна — это единицы измерения веса. Одна и та же величина в разных единицах выражается разными числами. Например:
Измерить величину — значит узнать, сколько раз в ней содержится другая величина того же рода, принятая за единицу измерения.
Например, мы хотим узнать точную длину какой-нибудь комнаты. Значит нам нужно измерить эту длину при помощи другой длины, которая нам хорошо известна, например при помощи метра. Для этого откладываем метр по длине комнаты столько раз, сколько можно. Если он уложится по длине комнаты ровно 7 раз, то длина её равна 7 метрам.
В результате измерения величины получается или именованное число, например 12 метров, или несколько именованных чисел, например 5 метров 7 сантиметров, совокупность которых называется составным именованным числом.
В каждом государстве правительство установило определённые единицы измерения для различных величин. Точно рассчитанная единица измерения, принятая в качестве образца, называется эталоном или образцовой единицей. Сделаны образцовые единицы метра, килограмма, сантиметра и т. п., по которым изготавливают единицы для обиходного употребления. Единицы, вошедшие в употребление и утверждённые государством, называются мерами.
Меры называются однородными, если они служат для измерения величин одного рода. Так, грамм и килограмм — меры однородные, так как они служат для измерения веса.
Единицы измерения
Ниже представлены единицы измерения различных величин, которые часто встречаются в задачах по математике:
Меры веса/массы:
Меры длины:
Меры площади (квадратные меры):
Меры объёма (кубические меры):
Рассмотрим ещё такую величину как литр. Для измерения вместимости сосудов употребляется литр. Литр является объёмом, который равен одному кубическому дециметру (1 литр = 1 куб. дециметру).
Меры времени:
Кроме того, используют такие единицы измерения времени, как квартал и декада.
Месяц принимается за 30 дней, если не требуется определить число и название месяца. Январь, март, май, июль, август, октябрь и декабрь — 31 день. Февраль в простом году — 28 дней, февраль в високосном году — 29 дней. Апрель, июнь, сентябрь, ноябрь — 30 дней.
Год представляет собой (приблизительно) то время, в течении которого Земля совершает полный оборот вокруг Солнца. Принято считать каждые три последовательных года по 365 дней, а следующий за ними четвёртый — в 366 дней. Год, содержащий в себе 366 дней, называется високосным, а годы, содержащие по 365 дней — простыми. К четвёртому году добавляют один лишний день по следующей причине. Время обращения Земли вокруг Солнца содержит в себе не ровно 365 суток, а 365 суток и 6 часов (приблизительно). Таким образом, простой год короче истинного года на 6 часов, а 4 простых года короче 4 истинных годов на 24 часа, т. е. на одни сутки. Поэтому к каждому четвёртому году добавляют одни сутки (29 февраля).
Об остальных видах величин вы узнаете по мере дальнейшего изучения различных наук.
Сокращённые наименования мер
Сокращённые наименования мер принято записывать без точки:
Измерительные приборы
Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.
Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.
Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:
Цифрами 1, 2, 3, 4 и т. д. обозначены расстояния между штрихами, которые разделены на 10 одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует 1 мм. Эта величина называется ценой деления шкалы измерительного прибора.
Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.
Для того чтобы определить цену деления, необходимо:
В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.
Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).
Например, штрихи с обозначениями 20 °С и 30 °С. Расстояние между этими штрихами разделено на 10 делений. Таким образом, цена каждого деления будет равна:
Следовательно, термометр показывает 47 °С.
Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.
Величина (математика)
Первоначально была определена положительная скалярная величина с отношением неравенства и операцией сложения. Среди её обобщений векторы и тензоры, для которых нельзя определить отношение неравенства, «неархимедовы» величины, для которых не выполняется аксиома Архимеда. Система действительных чисел также может рассматриваться как система величин.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Величина
Одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.
I. Ещё в «Началах» Евклида (3 в. до н. э.) были отчётливо сформулированы свойства В., называемых теперь, для отличия от дальнейших обобщений, положительными скалярными величинами. Это первоначальное понятие В. является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы и т.п. Каждый конкретный род В. связан с определенным способом сравнения физических тел или др. объектов. Например, в геометрии отрезки сравниваются при помощи наложения, и это сравнение приводит к понятию длины: два отрезка имеют одну и ту же длину, если при наложении они совпадают; если же один отрезок накладывается на часть другого, не покрывая его целиком, то длина первого меньше длины второго. Общеизвестны более сложные приёмы, необходимые для сравнения плоских фигур по площади или пространственных тел по объёму.
В соответствии со сказанным, в пределах системы всех однородных В. (то есть в пределах системы всех длин или всех площадей, всех объёмов) устанавливается отношение неравенства: две В. а и b одного и того же рода или совпадают (а = b), или первая меньше второй (а
1) каковы бы ни были а и b, имеет место одно и только одно из трёх соотношений: или а = b, или а
3) для любых двух В. а и b существует однозначно определённая В. с = а+b,
7) если а > b, то существует одна и только одна В. с, для которой b + с = а (возможность вычитания);
8) каковы бы ни были В. а и натуральное число n, существует такая В. b, что nb = a (возможность деления);
9) каковы бы ни были В. а и b, существует такое натуральное число n, что а
Если взять какую-либо длину l за единичную, то система s’ всех длин, находящихся в рациональном отношении к l, удовлетворяет требованиям 1—9. Существование несоизмеримых (см. Соизмеримые и несоизмеримые величины) отрезков (открытие которых приписывается Пифагору, 6 в. до н. э.) показывает, что система s’ ещё не охватывает системы s всех вообще длин.
Чтобы получить вполне законченную теорию В., к требованиям 1—9 надо присоединить ещё ту или иную дополнительную аксиому непрерывности, например:
10) если последовательности величин a12
Свойства 1—10 и определяют полностью современное понятие системы положительных скалярных В. Если в такой системе выбрать какую-либо В. l за единицу измерения, то все остальные В. системы однозначно представляются в виде а = al, где а. — положительное действительное число. Подробнее об измерении В. см. ст. Измерение.
II. Рассмотрение направленных отрезков на прямой, скоростей, могущих иметь два противоположных направления, и т.п. В. естественно приводит к тому обобщению понятия скалярной В., которое является основным в механике и физике. Система скалярных В. в этом понимании включает в себя, кроме положительной В., нуль и отрицательную В. Выбирая в такой системе какую-либо положительную величину l за единицу измерения, выражают все остальные В. системы в виде а = αl, где α — действительное число, положительное, отрицательное или равное нулю. Конечно, систему скалярных В. в этом понимании можно охарактеризовать и аксиоматически, не опираясь на понятие числа. Для этого пришлось бы несколько изменить требования 1—10, которыми выше охарактеризовано понятие положительной скалярной В.
III. В более общем смысле слова величинами называют Векторы, Тензоры и др. «не скалярные величины». Такие В. можно складывать, но отношение неравенства (а
IV. В некоторых более отвлечённых математических исследованиях играют известную роль «неархимедовы» В., которые имеют с обычными скалярными В. то общее, что для них сохраняются обычные свойства неравенств, но аксиома 9 не выполняется (для скалярных В. в смысле пункта II она сохраняется с оговоркой, что b > 0).
V. Так как система действительных положительных чисел удовлетворяет перечисленным выше свойствам 1—10, а система всех действительных чисел обладает всеми свойствами скалярных В., то вполне законно сами действительные числа называть величинами. Это особенно принято при рассмотрении переменных В. Если какая-либо конкретная В., например длина l нагреваемого металлического стержня, изменяется во времени, то меняется и измеряющее её число х = l / l0 (при постоянной единице измерения lo). Само это меняющееся во времени число х принято называть переменной В. и говорить, что х принимает в какие-либо последовательные моменты времени t1, t2,. »числовые значения» X1, X2. В традиционной математической терминологии говорить о «переменных числах» не принято. Однако логичнее такая точка зрения: числа, как и длины, объёмы и т.п., являются частными случаями В. и, как всякие В., могут быть и переменными, и постоянными. Столь же законно и рассмотрение переменных векторов, тензоров и т.п.
По поводу принципиального значения перехода к рассмотрению переменных В. для всего развития математики см. в статье Математика.
Лит.: Лебег А., Об измерении величин, пер. с франц., 2 изд., М., 1960.
Понятие величины и её измерения в математике
Длина, площадь, масса, время, объём – величины. Первоначальное знакомство с ними происходит в начальной школе, где величина наряду с числом является ведущим понятием.
1) Любые две величины одного рода сравнимы: они либо равны, либо одна меньше (больше) другой. То есть, для величин одного рода имеют место отношения «равно», «меньше», «больше» и для любых величин и справедливо одно и только одно из отношений: Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем любой катет данного треугольника; масса лимона меньше, чем масса арбуза; длины противоположных сторон прямоугольника равны.
2) Величины одного рода можно складывать, в результате сложения получится величина того же рода. Т.е. для любых двух величин а и b однозначно определяется величина a+b, её называют суммой величин а и b. Например, если a-длина отрезка AB, b – длина отрезка ВС (рис.1), то длина отрезка АС, есть сумма длин отрезков АВ и ВС;
3) Величину умножают на действительное число, получая в результате величину того же рода. Тогда для любой величины а и любого неотрицательного числа x существует единственная величина b= x а, величину b называют произведением величины а на число x. Например, если a – длину отрезка АВ умножить на x= 2, то получим длину нового отрезка АС. (Рис.2)
4) Величины одного рода вычитают, определяя разность величин через сумму: разностью величин а и b называется такая величина с, что а=b+c. Например, если а – длина отрезка АС, b – длина отрезка AB, то длина отрезка ВС есть разность длин отрезков и АС и АВ.
5) Величины одного рода делят, определяя частное через произведение величины на число; частным величин а и b-называется такое неотрицательное действительное число х, что а= х b. Чаще это число – называют отношением величин а и b и записывают в таком виде: a/b = х. Например, отношение длины отрезка АС к длине отрезка АВ равно 2.(Рис №2).
6) Отношение «меньше» для однородных величин транзитивно: если А
Процесс сравнения зависит от рода рассматриваемых величин: для длин он один, для площадей – другой, для масс- третий и так далее. Но каким бы ни был этот процесс, в результате измерения величина получает определённое численное значение при выбранной единице.
Вообще, если дана величина а и выбрана единица величины e, то в результате измерения величины а находят такое действительное число x, что а=x e. Это число x называют численным значением величины а при единице е. Это можно записать так: х=m (a).
Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление. Векторными величинами являются сила, ускорение, напряжённость электрического поля и другие.
В начальной школе рассматриваются только скалярные величины, причём такие, численные значения которых положительны, то есть положительные скалярные величины.
Измерение величин позволяет свести сравнение их к сравнению чисел, операции над величинами к соответствующим операциям над числами.
1. Если величины а и b измерены при помощи единицы величины e, то отношения между величинами a и b будут такими же, как и отношения между их численными значениями, и наоборот.
a=b m (a)=m (b),
a>b m (a)>m (b),
a
Например, если массы двух тел таковы, что а=5 кг, b=3 кг, то можно утверждать, что масса а больше массы b поскольку 5>3.
2. Если величины а и b измерены при помощи единицы величины e, то, чтобы найти численное значение суммы a+b достаточно сложить
численные значения величин а и b. а+b= c m (a+b) = m (a) + m (b). Например, если а = 15 кг, b=12 кг, то а+b=15 кг + 12 кг = (15+12) кг = 27кг
Рассмотренные понятия – объект, предмет, явление, процесс, его величина, численное значение величины, единица величины – надо уметь вычленять в текстах и задачах.
Рассмотрим определения некоторых величин и их измерений.