Что такое веса в информатике
Урок 5
Измерение информации (алфавитный подход). Единицы измерения информации
§4. Измерение информации
Основные темы параграфа:
— алфавитный подход к измерению информации;
— алфавит, мощность алфавита;
— информационный вес символа;
— информационный объем текста;
— единицы информации.
Изучаемые вопросы:
— Алфавит, мощность алфавита.
— 1 бит – информационный вес символа двоичного алфавита.
— N=2b – формула для определения информационного веса символа.
— Информационный объём текста
— Единицы измерения информации: байт, килобайт, мегабайт, гигабайт.
Материал для углубленного изучения темы «Измерение информации»
Изучаемые вопросы:
— Содержательный подход к измерению информации
— Неопределенность знаний
— Формула Хартли
Алфавитный подход к измерению информации
Алфавитный подход позволяет измерять информационный объем текста на некотором языке (естественном или формальном), не связанный с содержанием этого текста.
Вам хорошо известно, что существуют единицы измерения таких величин, как, например, расстояние, масса, время. Для расстояния — это метр, для массы — грамм, для времени — секунда. Измерение происходит путем сопоставления измеряемой величины с единицей измерения.
* О другом подходе к измерению информации см. в разделе 1.1 материала для углубленного изучения «Дополнение к главе I».
Сколько раз единица измерения укладывается в измеряемой величине, таков и результат измерения. Следовательно, и для измерения информации должна быть введена своя единица измерения.
Алфавит. Мощность алфавита
Под алфавитом некоторого языка мы будем понимать набор букв, знаков препинания, цифр, скобок и других символов, используемых в тексте. В алфавит также следует включить и пробел, т. е. пропуск между словами.
Полное число символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54: 33 буквы + 10 цифр + 11 знаков препинания, скобки, пробел.
Информационный вес символа
При алфавитном подходе считается, что каждый символ текста имеет определенный информационный вес. Информационный вес символа зависит от мощности алфавита. А каким может быть наименьшее число символов в алфавите? Оно равно двум! Скоро вы узнаете, что такой алфавит используется в компьютере. Он содержит всего 2 символа, которые обозначаются цифрами 0 и 1. Его называют двоичным алфавитом. Изучая устройство и работу компьютера, вы узнаете, как с помощью всего двух символов можно представить любую информацию.
Информационный вес символа двоичного алфавита принят за единицу информации и называется 1 бит.
С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита. Так один символ из четырехсимвольного алфавита (N = 4) «весит» 2 бита. Объяснение этому можно дать следующее: все символы такого алфавита можно закодировать всеми возможными комбинациями из двух цифр двоичного алфавита. Комбинацию из нескольких (двух, трех и т. д.) знаков двоичного алфавита назовем двоичным кодом.
Используя три двоичные цифры, можно составить 8 различных комбинаций.
Следовательно, если мощность алфавита равна 8, то информационный вес одного символа равен 3 битам.
Четырехзначными двоичными кодами могут быть закодированы все символы 16-символьного алфавита, и т. д.
Найдем зависимость между мощностью алфавита (N) и количеством знаков в коде (b) — разрядностью двоичного кода.
В общем виде это записывается следующим образом:
N = 2b.
Разрядность двоичного кода — это и есть информационный вес символа.
Информационный объем текста. Единицы информации
Информационный объем текста складывается из информационных весов составляющих его символов. Например, следующий текст, записанный с помощью двоичного алфавита:
1101001011000101110010101101000111010010
содержит 40 символов, следовательно, его информационный объем равен 40 битам.
Сегодня для подготовки текстовых документов чаще всего применяются компьютеры. Алфавит, из которого составляется такой «компьютерный текст», содержит 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: строчные и прописные латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания и пр.
1 байт = 8 битов.
Легко подсчитать информационный объем текста, если известно, что информационный вес одного символа равен 1 байту. Надо просто сосчитать число символов в тексте. Полученное значение и будет информационным объемом текста, выраженным в байтах.
Например, небольшая книжка, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице 40 строк, в каждой строке 60 символов (включая пробелы между словами). Значит, страница содержит 40 х 60 = 2400 байтов информации. Для вычисления информационного объема всей книги нужно полученную величину умножить на число страниц:
2400 байтов * 150 = 360 000 байтов.
Уже на таком примере видно, что байт — «мелкая» единица. А представьте, что нужно, например, измерить информационный объем целой библиотеки. В байтах это окажется громадным числом!
Для измерения больших информационных объемов используются более крупные единицы:
1 килобайт = 1 Кб = 2 10 байтов = 1024 байта
1 мегабайт = 1 Мб = 2 10 Кб = 1024 Кб
1 гигабайт = 1 Гб = 2 10 Мб = 1024 Мб
1 терабайт = 1 Тб = 2 10 Гб = 1024 Гб
Следовательно, информационный объем вышеупомянутой книги равен приблизительно 360 килобайтам. А если посчитать точнее, то получится:
360 000 : 1024 = 351,5625 Кб.
351,5625 : 1024 = 0,34332275 Мб.
В заключение еще раз обратим внимание на важное свойство рассмотренного здесь алфавитного подхода. При его использовании содержательная сторона текста в учет не берется. Текст, состоящий из бессмысленного сочетания символов, будет иметь ненулевой информационный объем.
Коротко о главном
Алфавитный подход — это способ измерения информационного объема текста, не связанного с его содержанием.
Алфавит — это вся совокупность символов, используемых в некотором языке для представления информации. Мощность алфавита — это число символов в нем.
1 бит — информационный вес одного символа двухсимвольного алфавита (N = 2).
Если N не равно двойке в целой степени, то находится большее N, ближайшее к N целое число М = 2 b (b — целое), и из этого равенства определяется b — информационный вес символа.
Информационный объем текста равен сумме информационных весов всех символов, составляющих текст.
1 байт — информационный вес символа из алфавита мощностью 2 8 = 256 символов. 1 байт = 8 битов.
Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2 10 ) раза.
Вопросы и задания
1. Что такое алфавит?
2. Что такое мощность алфавита?
3. Как определяется информационный объем текста при использовании алфавитного подхода?
4. Текст составлен с использованием алфавита мощностью 64 символа и содержит 100 символов. Каков информационный объем текста?
5. Что такое байт, килобайт, мегабайт, гигабайт, терабайт?
6. Информационный объем текста, подготовленного с помощью компьютера, равен 3,5 Кб. Сколько символов содержит этот текст?
7. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй — мощностью 64 символа. Во сколько раз различаются информационные объемы этих текстов?
Электронное приложение к уроку
Вернуться к материалам урока | ||
Презентации, плакаты, текстовые файлы | Ресурсы ЕК ЦОР | |
Видео к уроку |
Cкачать материалы урока
Что такое веса в информатике
Алфавитный подход к измерению информации
Каждый символ некоторого сообщения имеет определённый информационный вес – несёт фиксированное количество информации.
Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита.
Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит (bit)».
Информационный вес символа произвольного алфавита
• Алфавит любого языка можно заменить двоичным алфавитом.
• Информационный вес символа = разрядность двоичного кода.
• Мощность алфавита и информационный вес символа алфавита: N =2 i
Информационный объем сообщения
Информационный объём I сообщения равен произведению количества K символов в сообщении на информационный вес i символа алфавита:
Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?
Решение: Составим краткую запись условия задачи.
Известно соотношение, связывающее величины
Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?
N = 32, I = K i, N = 2 i
Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?
i = 720/180 = 4 (бита); N = 2 4 = 16 (символов)
Информатика. 7 класс
Конспект урока
Единицы измерения информации
Перечень вопросов, рассматриваемых в теме:
Каждый символ информационного сообщения несёт фиксированное количество информации.
Единицей измерения количества информации является бит – это наименьшаяединица.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Формулы, которые используются при решении типовых задач:
Информационный объём сообщения определяется по формуле:
I – объём информации в сообщении;
К – количество символов в сообщении;
i – информационный вес одного символа.
Теоретический материал для самостоятельного изучения.
Любое сообщение несёт некоторое количество информации. Как же его измерить?
Одним из способов измерения информации является алфавитный подход, который говорит о том, что каждый символ любого сообщения имеет определённый информационный вес, то есть несёт фиксированное количество информации.
Сегодня на уроке мы узнаем, чему равен информационный вес одного символа и научимся определять информационный объём сообщения.
Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.
Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.
Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.
Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.
Составим краткую запись условия задачи и решим её:
Информационный вес одного символа этого алфавита составляет 4 бита.
Сообщение состоит из множества символов, каждый из которых имеет свой информационный вес. Поэтому, чтобы вычислить объём информации всего сообщения, нужно количество символов, имеющихся в сообщении, умножить на информационный вес одного символа.
Математически это произведение записывается так: I = К · i.
Например: сообщение, записанное буквами 32-символьного алфавита, содержит 180 символов. Какое количество информации оно несёт?
I = 180 · 5 = 900 бит.
Итак, информационный вес всего сообщения равен 900 бит.
В алфавитном подходе не учитывается содержание самого сообщения. Чтобы вычислить объём содержания в сообщении, нужно знать количество символов в сообщении, информационный вес одного символа и мощность алфавита. То есть, чтобы определить информационный вес сообщения: «сегодня хорошая погода», нужно сосчитать количество символов в этом сообщении и умножить это число на восемь.
I = 23 · 8 = 184 бита.
Значит, сообщение весит 184 бита.
Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.
Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Итак, сегодня мы узнали, что собой представляет алфавитный подход к измерению информации, выяснили, в каких единицах измеряется информация и научились определять информационный вес одного символа и информационный объём сообщения.
Материал для углубленного изучения темы.
Как текстовая информация выглядит в памяти компьютера.
Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.
Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.
В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.
Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:
01100110 01101001 01101100 01100101.
А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:
01100100 01101001 01110011 01101011?
В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.
Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.
Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.
Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.
Разбор решения заданий тренировочного модуля
№1. Определите информационный вес символа в сообщении, если мощность алфавита равна 32?
№2. Выразите в килобайтах 2 16 байтов.
2 6 = 64, а 2 10 байт – это 1 Кб. Значит, 64 · 1 = 64 Кб.
№3. Тип задания: выделение цветом
8 х = 32 Кб, найдите х.
Конспект «Измерение информации.» Информационный вес и объем.»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Алфавитный подход к измерению информации.
Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.
Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.
Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.
При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит.
Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания binary digit — «двоичная цифра».
За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита.
1.6.2. Информационный вес символа произвольного алфавита
Ранее мы выяснили, что алфавит любого естественного или формального языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита N связана с разрядностью двоичного кода i, требуемой для кодирования всех символов исходного алфавита, соотношением: N = 2 i.
Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.
Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2 i.
Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?
Решение. Составим краткую запись условия задачи.
Известно соотношение, связывающее величины i и N: N = 2 i.
С учётом исходных данных: 8 = 2 i. Отсюда: i = 3.
Полная запись решения в тетради может выглядеть так:
1.6.3. Информационный объём сообщения
Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.
Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i: I = K * i.
Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?
Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?
1.6.4. Единицы измерения информации
В наше время подготовка текстов в основном осуществляется с помощью компьютеров. Можно говорить о «компьютерном алфавите», включающем следующие символы: строчные и прописные русские и латинские буквы, цифры, знаки препинания, знаки арифметических операций, скобки и др. Такой алфавит содержит 256 символов. Поскольку 256 = 28, информационный вес каждого символа этого алфавита равен 8 битам. Величина, равная восьми битам, называется байтом. 1 байт — информационный вес символа алфавита мощностью 256.
Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:
1 килобайт = 1 Кб = 1024 байта = 210 байтов
1 мегабайт = 1 Мб = 1024 Кб = 210 Кб = 220 байтов
1 гигабайт = 1 Гб = 1024 Мб = 210 Мб = 220 Кб = 230 байтов
1 терабайт = 1 Тб = 1024 Гб = 210 Гб = 220 Мб = 230 Кб = 240 байтов
Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?
Задача 5. В велокроссе участвуют 128 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер цепочкой из нулей и единиц минимальной длины, одинаковой для каждого спортсмена. Каков будет информационный объём сообщения, записанного устройством после того, как промежуточный финиш пройдут 80 велосипедистов?
Решение. Номера 128 участников кодируются с помощью двоичного алфавита. Требуемая разрядность двоичного кода (длина цепочки) равна 7, так как 128 = 27. Иначе говоря, зафиксированное устройством сообщение о том, что промежуточный финиш прошёл один велосипедист, несёт 7 битов информации. Когда промежуточный финиш пройдут 80 спортсменов, устройство запишет 80 • 7 = 560 битов, или 70 байтов информации.