Что такое воздушное питание кратко
Класс: 6
Презентация к уроку
Класс: 6.
Тип урока: Изучение нового материала.
Форма урока: комбинированный.
Оборудование:
Цели урока:
Структура урока:
№ | Этапы | Методы и приемы |
1 | Организационный | Приветствие, проверка готовности к уроку, благоприятный настрой учащихся на восприятие урока. |
2 | Актуализация знаний. | Постановка цели урока. Повторение ранее изученного материала. |
3 | Изучение новой темы. | Рассказ, беседа, демонстрация. |
4 | Закрепление изученного материала. | Индивидуальная самостоятельная работа с рабочей тетрадью, обобщение изученного материала. |
5 | Итог урока. | Фронтальный опрос, выводы. |
Ход урока
I. Организационный момент.
II. Актуализация знаний.
Повторение ранее изученного материала:
III. Изучение нового материала – рассказ учителя с элементами беседы.
А) Фотосинтез как процесс образования органических веществ из углекислого газа и воды, его этапы.
Б) Виртуальная лаборатория: Опыт №1, доказывающий, что растения в процессе фотосинтеза выделяют кислород. Опыт №2, доказывающий образование органических веществ (крахмала) в зеленых листьях растения на свету.
В) Условия, необходимые для протекания фотосинтеза (самостоятельная работа с учебником).
Г) Способы питания растений: почвенное и воздушное, их взаимосвязь.
IV. Закрепление изученного материала.
Самостоятельная работа, выполнение заданий в рабочей тетради.
V. Взаимосвязь воздушного и почвенного питания растений.
Вопрос: Кто же играет главенствующую роль в жизни растения. Листья или корни?
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Home » Агрохимия » Воздушное питание растений (фотосинтез)
Популярные статьи
Воздушное питание растений (фотосинтез)
Фотосинтез — процесс образования безазотистых органических веществ (углеводов) растениями из углекислого газа атмосферы и воды под действием солнечного света:
Растения, произрастающие на суше, ежегодно поглощают из атмосферы примерно 20 млрд т углерода в форме углекислого газа или в среднем 1300 кг на 1 га, вся совокупность растений, включая морские водоросли, — около 150 млрд т. Наземные растения перерабатывают 4217 кДж космической солнечной энергии в продукты ассимиляции ежегодно.
Однако коэффициенты использования фотосинтетически активной радиации (ФАР), то есть солнечного света с длиной волны от 380 до 720 нм, на создание органического вещества составляет 47-49% интегральной солнечной радиации. В посевах коэффициенты использования ФАР не превышают 0,5-3%. Максимально возможным для фотосинтеза считается КПД ФАР 28%. Наиболее интенсивное накопление биомассы — до 700 кг/га в сутки — происходит при хороших условиях освещенности, температуры и водоснабжения, высоком уровне обеспеченности питательными веществами и составляет до 14% от общего поступления ФАР за день.
Образующиеся в процессе фотосинтеза простые углеводы служат исходным материалом для синтеза сложных углеводов: сахарозы C12H22O11, крахмала (C6H10O5)n, клетчатки (C6H10O5)n.
Фотосинтетическая деятельность зависит от видовых особенностей растения, возраста отдельных листьев и всего растения, интенсивности и длины волны света, уровня азотного питания.
Только 2-4% солнечной энергии, попадающей на поверхность вегетирующих растений, используется для синтеза органических веществ. Остальная часть расходуется на транспирацию и отражение. Растение испаряет воду для охлаждения. Сам процесс испарения связан с большой затратой энергии. На испарение листьями расходуется более 25% солнечной энергии, в южных районах — до 70-95%, что примерно в 10-45 раз больше, чем запасается в урожае.
Одна из задач современной науки — изыскание способов повышения коэффициента использования солнечной энергии.
«Если последствия хищнического хозяйства, непроизвольно удаляющего из почвы питательные вещества, и поправимы тем или иным способом, путем удобрения земли, то окончательно непоправимо только расточительное, неумелое пользование главным источником народного богатства — солнечным светом».
Для образования сложных органических веществ из первичных продуктов фотосинтеза затрачивается энергия, образующаяся в растении в результате дыхательных процессов, то есть окисление углеводов кислородом. Этот процесс противоположен фотосинтезу:
Выделяющаяся при дыхании энергия используется на:
Энергия дыхания используется и для преодоления ростками сопротивления почвы при прорастании.
Энергия, выделяемая в процессе дыхательного окисления веществ переходит в специфическую форму накопления энергии — макроэргические фосфатные связи аденозинтрифосфорной кислоты (АТФ).
Макроэргические соединения можно разделить на две группы:
Во всех реакциях обмена веществ энергия используется в сопряженных процессах освобождения и использования энергии, а передача энергии от одной реакции к другой может быть только, когда две реакции идут последовательно и имеют общие промежуточные продукты. Так, образование сахарозы может протекать сопряжённо с гидролизом АТФ:
глюкозофосфат + фруктоза → сахароза + H3PO4.
Аналогично протекают процессы образования крахмала из глюкозы, белков из аминокислот.
В сухие жаркие годы с суховеями фотосинтез у растений возможен только в ранние утренние и вечерние часы. В остальное время происходит потеря пластических веществ и энергии на сопротивление и защитные реакции неблагоприятным условиям среды (дефициту влаги и повышенной температуре). При этом нарушается баланс между образованием и расходованием макроэргических фосфорных соединений, снижается энергетический потенциал, повышается окислительный потенциал в клетке, что приводит к окислительному разрушению углеводов, белков, в связи с чем в тканях растительного организма накапливается аммиак и наступает их отравление.
Было отмечено положительное влияние фосфора и калия на обводненность коллоидов протоплазмы, что приводит к снижению расхода влаги на транспирацию. Ткани растений, обеспеченные фосфором, характеризуются большой водоудерживающей способностью. У таких растений более устойчивый водообмен, обусловленный увеличением содержания осмотически- и коллоидно-связанной воды, повышенной гидратацией компонентов протоплазмы. Особенно действие фосфора проявляется в условиях недостаточного водообеспеченности в ранние периоды развития растений.
На современной стадии развития сельскохозяйственной науки, возможности регулирования процессов фотосинтеза ограничены. Ассимиляционная поверхность листьев в посевах может меняться от 5-6 до 40-50 тыс. м 2 на 1 га. Изреженные посевы поглощают только 20-25% падающей на них ФАР и используют на фотосинтез только 1-2% от поглощенной. При достаточной плотности посевов за вегетационный период растения могут поглощать 50-60% падающей ФАР и накапливать в органических веществах урожая до 2-3% от поглощенной энергии. Теоретически этот показатель может быть повышен до 20-25%. Если коэффициент использования поглощенной энергии на фотосинтез повысить до 6-8%, это приведет к сокращению расхода воды на создание 1 т сухого вещества с 400-500 до 75-100 т.
Воздушное питание растений
Фотосинтез – создание органических веществ
Корневое питание дает растению только минеральные соли и воду. Органические вещества и заключенную в них энергию растение получает в процессе фотосинтеза (от греч. фотос – «свет» и синтезис – «соединение»). Фотосинтез протекает в хлоропластах. В ходе этого процесса за счет энергии солнечного света растение с помощью зеленого хлорофилла листьев образует необходимые ему органические вещества из неорганических – углекислого газа и воды. Так как основным поставщиком углекислого газа для фотосинтеза является воздух, то этот способ получения растением органических веществ называют воздушным питанием.
Фотосинтез всегда поддерживается корневым питанием – поглощением из почвы воды и минеральных солей. Без воды фотосинтез не происходит.
Зеленый лист – специализированный орган воздушного питания. Благодаря плоской форме листовой пластинки лист имеет большую поверхность соприкосновения с воздушной средой и солнечным светом. Присутствие же в мякоти листа многочисленных хлоропластов с хлорофиллом создает огромную фотосинтезирующую поверхность, превращая таким образом лист в могучую фабрику образования органических веществ.
Роль света в фотосинтезе
Доказать, что зеленое растение только на свету образует органические вещества, можно простым опытом. Зеленое растение, например пеларгонию зональную (герань), помещают в темный шкаф. Через 2-3 дня у этого растения черной бумагой или фольгой затемняют небольшую часть одного листа и ставят растение на свет. Через 8-10 часов срезают этот лист, снимают с него затемняющую пластинку. Затем для обесцвечивания листа его кипятят в спирте (при этом разрушается хлорофилл и зеленая окраска исчезает). После этого лист помещают в раствор йода. В результате проведения опыта можно увидеть, что незатемненная часть листа, содержавшая крахмал, посинела (крахмал от йода становится синим), тогда как затемненная часть листа приобрела желтый цвет йода. Это свидетельствует о том, что здесь, в затемненной части листа. крахмал не образовался, так как клетки листа не получали световой энергии. Крахмал – это органическое вещество, которое растение образует на свету в процессе фотосинтеза.
Фотосинтез процесс, в котором зеленое растение из неорганических веществ (углекислого газа и воды) с использованием энергии солнечного света образует органические вещества – углеводы (глюкозу. фруктозу, крахмал), а также кислород.
Фотосинтез – очень славный многоступенчатый процесс. В общих чертах фотосинтез состоит из двух этапов. Начало процессу задает свет.
Схема процесса фотосинтеза: 1 — хлорофилл; 2 — вода; 3 — кислород; 4 — водород; 5 — углекислый газ; 6 — вещество, заряженное энергией; 7, 8 — углеводы (сахара)
Свет активирует хлорофилл. Активированный хлорофилл разлагает (разрушает) молекулу воды. При этом освобождается водород, а кислород виделяется в воздух. Это первый этап фотосинтеза. Так как участие энергии солнечного свата является обязательнейшим условием, то этот этап фотосинтеза называют световым. Затем в ходе химических реакций с участием углекислого газа и активных компонентов, полученных на первом этапе фотосинтеза, образуется органическое соединение, из которого в дальнейшем синтезируются различные углеводы, богатые энергией. Этот этап фотосинтеза называют темновым, потому что здесь все процессы идут без участия света.
Использование продуктов фотосинтеза растением
Весь сложный поэтапный процесс фотосинтеза идет в хлоропластах бесперебойно, пока зеленые листья получают солнечную энергию. Образовавшиеся в хлоропластах продукты фотосинтеза (углеводы) поступают в цитоплазму, где с помощью ферментов превращаются в другие органические вещества (белки, жиры и др.). Полученные органические вещества по ситовидным трубкам луба оттекают из листьев ко всем частям растения: к почкам, генеративным органам. Но большая их часть передвигается по стеблю вниз к корням, где принимает участие вместе с минеральными солями в образовании белков и жиров, которые откладываются про запас.
Основные пути передвижения веществ в процессе корневого и воздушного питания (красными стрелками обозначено движение воды и минеральных веществ, черными — органических веществ)
Образовавшиеся в ходе фотосинтеза органические соединения используются клетками растения в качестве питательных веществ.
Глюкоза — высокоэнергетическое вещество. В зависимости от потребностей растения она или сразу же после образования используется для процессов жизнедеятельности (в том числе для дыхания и построения клеток), или откладывается про запас в виде крахмала, сахаристых соков, или перерабатывается при участии минеральных солей, поглощенных корнями из почвы, в белки, жиры и другие органические вещества.
Для фотосинтеза обязательно нужен углекислый газ, поступающий в лист вместе с воздухом через устьица, и вода, приходящая по сосудам из корня.
Зеленые растения – автотрофы
В процессе воздушного питания растения поглощают неорганические вещества и с помощью энергии света и хлорофилла образуют органические вещества. Организмы. способные самостоятельно синтезировать органические вещества из неорганических, называют самопитающимися или автотрофными (от греч. аутос – «сам», трофе – «питание»). Автотрофный тип питания – главная особенность растительного организма.
Зеленые растения автотрофы: создавая органические вещества, запасают в них солнечную энергию. Запасенная в растительной массе энергия становится доступной для других живых организмов.
Роль автографов точно выразил российский ученый Сергей Павлович Костычев: «Стоит зеленому листу прекратить работу на несколько лет, и все живое население земного шара, в том числе и человечество, погибнет».
Успешность протекания воздушного питания зависит от многих факторов окружающей среды: интенсивности и качества света, концентрации углекислого газа, минерального питания, водного режима, температуры, загрязнения воздуха.
Некоторые газы промышленного происхождения, особенно сернистый газ, даже в малых дозах повреждают листья растений. Огромный вред побегам и листьям наносят выхлопные газы автомобилей. Сажистый налет закупоривает устьица и уменьшает прозрачность кожицы листа. Кислотные дожди разрушают кожицу и мякоть листа.
Воздушное питание растений поддерживается корневым питанием. Фотосинтез — процесс образования на свету с помощью хлорофилла органических веществ из воды и углекислого газа. В этом процессе зеленые растения улавливают энергию солнечного света и преобразуют ее в энергию, доступную для других организмов. Выделенный в процессе фотосинтеза кислород используется всеми живыми существами для дыхания. Сохранение зеленых растений на планете — важная задача, стоящая сейчас перед людьми.
Воздушное питание растений. Фотосинтез
Разделы: Биология
Класс: 6
Ключевые слова: биология
Основные цели: углубление знаний о способах питания в органическом мире, об особенностях пластического обмена веществ на примере фотосинтеза, изучение механизма фотосинтеза.
Создать условия для развития:
общепредметных компетенций: владение логическими операциями (анализ, синтез, сравнение, обобщение)
Метапредметные:
Ход урока
I. Мотивация к учебной деятельности
Эпиграф к уроку
Здравствуйте, ребята! Сегодня мы продолжим изучать питание растений. Прочитайте эпиграф к уроку. Какова главная мысль этих слов?
Возможные ответы учащихся
Хорошо! Вот и сегодня на уроке мы потрудимся и приоткроем еще одну тайну о зеленых растениях.
2. Актуализация знаний и фиксирование затруднения в пробном учебном действии
Ребята, мы продолжаем изучать один из самых важных процессов жизнедеятельности растений. Кто помнит – какой?
Фронтальная работа.
Актуализация знаний.
— Что мы знаем о питании растений?
— У растений существует минеральное (почвенное) питание.
— Что называется почвенным питанием?
Выполните задания:
— Заполните пропуски в тексте.
— Какие структуры участвуют в почвенном питании растений.
Выполните тест «Да-Нет»
Учащиеся выполняют задания в рабочих листах по двум вариантам.
По окончании работы учащиеся осуществляют взаимопроверку, оценивают работы.
Проверяем работу учеников у доски (проверяет ученик, комментирует правильность выполнения задания)
Итак, по сосудам корня и стебля вода поступает в листья.
1. Этих веществ, хватит для нормального роста и развития растений? Нет.
2. А какие вещества еще нужны растениям? Органические.
3. Какие вещества относятся к органическим? Белки, жиры, углеводы
Определение проблемы и цели урока, которая может быть поставлена с помощью проблемного вопроса.
Ребята! Весной мы бросаем в землю зернышко, а потом из него вырастает колос с множеством зерновок, наполненных питательными веществами. Откуда берет растение эти вещества?
Данный вопрос вызывает затруднения у учащихся. Сформулируйте свое затруднение.
Я пока не могу ответить на поставленный вопрос.
− У кого есть ответ, вы можете его обосновать? Я пока не могу обосновать правильность своего ответа. Откуда растения берут эти вещества?
− Что дальше надо сделать? Надо выяснить, почему возникло затруднение
3. Выявление места и причины затруднения
− Какое задание вы должны были выполнить?
Мы должны были ответить на вопрос,
В результате, какого процесса растение синтезирует органические вещества
Мы не знаем, какой это процесс и как он называется.
4. Построение проекта выхода из затруднения
Как вы считаете, какую цель мы поставим для нашего урока? Сформулируйте тему урока.
Узнать, как происходит образование органических веществ в растениях, как называется этот процесс и его механизмы.
− Как вы считаете, что вы можете сделать для достижения цели?
Изучить литературу, текст и схемы учебника, рассмотреть рисунки, эталоны
− Вы все правильно сказали, я вам предлагаю внимательно посмотреть и проанализировать эксперимент.
Учитель демонстрирует заранее заложенный опыт, подтверждающий образование крахмала в листьях на свету (проба Сакса): обесцвеченные листья и дольку картофеля учитель обливает раствором йода.
Учитель просит ребят объяснить, почему долька картофеля и лист, находящийся на свету, окрасились в синий цвет
Ученики обнаруживают, что лист с растения из шкафа остался светлым, а лист с растения, находившегося на свету, и долька картофеля окрасились в синий цвет.
Cравнивают, формулируют вывод.
В результате обсуждения опыта учащиеся убеждаются в том, что в листьях на свету образуется органическое вещество- крахмал (глюкоза), а в темном месте образование крахмала не происходит.
Какое главное условие, необходимое для образования крахмала Наличие солнечного света
Во всех ли клетках листа образуется крахмал? Учащиеся затрудняются ответить на этот вопрос.
Для ответа на этот вопрос демонстрируется опыт с пестролистной геранью. (Опыт с геранью закладывается так же, как и предыдущий, только без контроля.)
Школьникам предлагается выяснить, почему в зеленой части листа пестролистной герани обнаружен крахмал, а в белой – нет.
Учащиеся видят, что в растворе йода не весь лист окрашивается в синий цвет. Белая полоса по краю листа не окрашивается, значит, в ней крахмал не образуется.
Учащиеся предполагают, что в клетках зеленой части листа имеются пластиды зеленого цвета-хлоропласты, содержащие хлорофилл. В них протекает процесс образования крахмала. А в белой полоске листа герани хлоропластов нет, поэтому в ней крахмал не образуется.
А теперь, ребята, проанализировав результаты эксперимента и текст учебника, скажите, как же называется этот процесс Фотосинтез
5. Реализация построенного проекта
Как же протекает процесс фотосинтеза, какие вещества необходимы и какие вещества образуются в результате? Об этом вы узнаете, поработав с текстом и схемой фотосинтеза в учебнике.
Работа в группах с текстом:
1 группа: «Какие вещества принимают участие в фотосинтезе»
1 группа. Прочитайте текст п.14 в учебнике и заполните таблицу (прием «Бортовой журнал»).
Известная информация
Новая информация
– Выполните задание, осуществите самоконтроль.
2 группа. Прочитайте текст п.14 в учебнике и заполните таблицу (прием «Бортовой журнал»).
Известная информация
Новая информация
Запишите вывод: В результате фотосинтеза в ____________листа синтезируются_____________, которые по __________оттекают ко всем частям растений, а образовавшийся ______________выделяется через__________в атмосферу.
6. Первичное закрепление с проговариванием во внешней речи
Сформулируйте выводы из работы.
1 группа. Фотосинтез протекает в хлоропластах листа, из почвы в лист поступает вода, а их воздуха лист поглощает углекислый газ. Главное условие наличие солнечной энергии.
2 группа. В результате фотосинтеза в хлоропластах листа синтезируются органические вещества, которые по ситовидным трубкам луба оттекают ко всем частям растений, а образовавшийся кислород выделяется через устьица в атмосферу.
Теперь я предлагаю выполнить самостоятельную работу. Объясните результаты опыта Д.Пристли.
В результате фотосинтеза растения выделяют кислород, поэтому мышка, во втором случае, задохнулась.
7. Самостоятельная работа с самопроверкой по эталону
Выполните тестовое задание:
1. В процессе фотосинтеза происходит
а) поглощение кислорода и выделение углекислого газа
б) поглощение углекислого газа и образование кислорода.
2. Крахмал, образующийся в листьях в процессе фотосинтеза, нужен растению для
а) снабжения им всех частей растения;
б) выделения его во внешнюю среду.
3.Фотосинтез происходит
а) во всех частях растений
б) в зеленых частях растений
4.Какие вещества необходимы для фотосинтеза?
а) вода и углекислый газ
б) кислород и углекислый газ
5.Что способствует образованию крахмала в листьях?
а) кислород и минеральные вещества;
б) свет и вода.
Выполняют задание.
После выполнения задания учащиеся проводят самопроверку по эталону:
Ответ зачитывает ученик первым правильно выполнивший это задание.
Правильный ответ: 1-б,2-а,3-б,4-а,5-б
8. Включение нового знания в систему знаний и повторение
Беседа
Как вы думаете, влияет ли процесс фотосинтеза, протекающий в растениях, на другие живые организмы Земли? (Да – регулирует количество кислорода и углекислого газа в составе воздуха, синтезирует органические вещества, которые необходимы животным и человеку, но к образованию, которых они не способны)
— Что может произойти на Земле при полном уничтожении растительного покрова? (рассуждения учащихся)
Обобщаем сказанное, записываем выводы в тетрадь.
Записывают выводы:
9. Рефлексия учебной деятельности на уроке
Оцените свою работу на уроке:
Оценивают свою работу на уроке, высказывают свое мнение о содержании урока.
Домашнее задание
Дополнительно (по выбору учащихся):
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Питание растений
Питание растений — процесс поглощения из внешней среды, передвижения, накопления и трансформации питательных веществ, необходимых для жизни растений. В ходе этого процесса происходит обмен веществ между растениями и окружающей средой. Неорганические вещества, находящиеся в почве, атмосфере и вода поступают в растение, и используются для синтеза сложных органических соединений, часть веществ может выводится из растительного организма в окружающую среду.
Зеленые растения под действием солнечного света в процессе фотосинтеза из углекислого газа, воды и простых минеральных солей синтезируют органические вещества, которые в свою очередь обеспечивают пищей человека и животных. В результате этого процесса вся зеленая растительность в дневное время выделяет большое количества кислорода, которым дышат живые организмы. Поэтому жизнь на Земле обусловлена работой высших и низших растений. О масштабе и значимости этого процесса в природе можно судить по следующим данным: зеленые растения ежегодно образуют в пересчете на глюкозу до 400 млрд т органических веществ, из которых 115 млрд т — на суше, связывается до 170 млрд т углекислого газа и разлагается при фотолизе в растениях 130 млрд т воды с выделением 115 млрд т кислорода.
Для синтеза органических веществ растения в мировом масштабе используют до 2 млрд т азота и 6 млрд т зольных элементов. Запасы азота в атмосфере составляют 4·10 15 т, однако они не определяют обеспеченность культур азотом, так как растения используют этот элемент из почвы, а не атмосферы.
Растение через листья получает более 95% углекислого газа и может усваивать путем некорневого питания из водных растворов зольные элементы и азот. Однако основное количество азота, воды и зольных питательных веществ поступает из почвы через корневую систему.
Вода потребляется растением и используется в процессе питания фотолиза и в значительно большем количестве испаряется листьями. Для образовании 1 кг сухой массы урожая культуры испаряют 300-400 кг воды. В неблагоприятных условиях расход воды возрастает в 1,5-2 раза, тогда как в оптимальных условиях расход воды снижается на 15-20%.
Из-за взаимосвязи с погодно-климатическими условиями регулирование и оптимизация процесса питания растений и обмена веществ не всегда возможна. От этих условий зависит и содержание питательных веществ в почве в доступной для растений форме. Мобилизация или иммобилизация отдельных питательных веществ в почве также определяется активностью и направленностью химических, физико-химических и микробиологических процессов, биологическими свойствами самого растения, динамикой поглощения отдельных катионов и анионов в процессе вегетации.
На процессы, определяющие рост и развитие растений, сильное влияние оказывают удобрения. Они изменяют содержание солей в почве, интенсивность и направленность химических, физико-химических и биологических процессов, реакцию и буферность почвы, поглотительную способность.
Типы питания растений
Автотрофный тип питания — самостоятельное обеспечение растением своих потребностей в питательных веществах, посредством поглощения неорганических веществ из почвы и углекислого газа из атмосферы. Характерен для большинства растений. К организмам с автотрофным типом питания относятся также некоторые бактерии, способные фотосинтетически или хемисинтетически усваивать углекислый газ.
Симбиотрофный тип питания — обеспечение растением своих потребностей в питательных веществ за счет других организмов (симбионтов). Симбиоз в ходе эволюционных процессов развился как полезная для растений форма отношений. При симбиотрофном типе питания отмечается взаимное использование продуктов обмена веществ для питания. Границы симбиоза не всегда могут быть точно определены, так как трудно определить пользу или вред, приносимые одним организмом другому.
Бактериотрофный тип питания — симбиоз высших растений с бактериями. Наиболее яркий пример — симбиоз клубеньковых бактерий с бобовыми растениями. В условиях интенсификации, химизации и экологизации земледелия возрастает значение способности бобовых растений и микроорганизмов связывать молекулярный азот атмосферы. Ежегодно в результате симбиоза бактерий с бобовыми растениями фиксируется 40-106 т азота.
Условия питания растений
Обеспечение оптимальных условий питания за счет использования удобрений позволяет более экономно расходовать влагу на создание единицы урожая. Коэффициент транспирации при этом может снижаться на 15-20%. С другой стороны, экономическая эффективность удобрений дополнительным урожаем возрастает при условии хорошего водоснабжения растений. Отмечены многочисленные случаи отсутствия положительного эффекта удобрений на кислых и солонцовых почвах.
Для правильной оценки эффективности применения удобрений необходимо правильно оценивать все факторы, лимитирующие урожайность. Например, в северных районах в условиях достаточного увлажнения, большее значение приобретают факторы тепла и обеспеченности почв питательными веществами.
В южных районах, особенно на обыкновенных южных чернозёмах и каштановых почвах, характеризующихся высоким потенциальным плодородием, лимитирующим фактором чаще является недостаток влаги.
Виды питания растений
Воздушное питание растений — углеродное питание растений, осуществляемое за счет ассимиляции углекислого газа атмосферы зелеными листьями в процессе фотосинтеза.
Некорневое питание растений — процесс поступление питательных веществ в растения через надземные органы. Открытие этого процесса послужило развитию применения некорневых подкормок, которые позволяют повысить урожай и его качество.
Корневое питание растений — поглощение из почвы воды и минеральных солей, а также в незначительных количествах некоторых органических веществ.
Согласно исследованиям, деление на корневое и воздушное питание условно, так как одни и те же вещества могут поглощаться как корнями, так и листьями. Так, углекислота поступает в растение через корни в той же мере, что и через листья. Сера поступает в растение через корни в виде сульфатов. Позже благодаря применению радиоизотопа серы была показана способность растений усваивать оксиды серы из воздуха через листья.
Корневое и некорневое питание растений взаимосвязаны. Так, недостаток питательных веществ в почве приводит к задержке образования органических соединений в листьях, что, в свою очередь, тормозит развитие растений.
Питание растений в разные периоды вегетации
Поглощение элементов питания в онтогенезе, то есть в течение вегетации, происходит неравномерно, поэтому система удобрения должна учитывать потребности растений в разные периоды жизненного цикла. Недостаточное обеспечение питания в различные периоды жизни растений приводит к снижению урожайности и ухудшению качества растительной продукции.
Особенно важно обеспечить питательными веществами растения в критический период, когда недостаток питания в это время резко ухудшает рост и развитие. То же относится и к периоду максимального поглощения.
Высокая чувствительность к недостатку и к избытку минерального питания отмечается у растений в начальный период роста.
Таблица. Влияние питания растений фосфором на урожайность ячменя[efn_note]Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.[/efn_note]
Условия питания | Урожайность, % | |
---|---|---|
общая | зерно | |
Нормальное питание фосфором постоянно | 100 | 100 |
Без фосфора первые 15 дней | 17,4 | 0 |
Без фосфора от 45 до 60 дней | 102 | 104 |
Высокая потребность молодых растений в минеральном питании объясняется высокой интенсивностью синтетических процессов при слаборазвитой корневой системе. Так, у зерновых злаков закладка и дифференциация репродуктивных органов начинается в период развертывания первых трех-четырех листочков. Недостаток азота в этот период приводит к сокращению числа колосков и снижению урожая. Последующее нормальное питание не компенсирует дефицит питательных веществ на начальных этапах развития.
Интенсивность потребления питательных веществ у разных культур меняется в зависимости от периода развития. Например, растения сахарной свеклы в первый месяц потребляют азота, фосфора и калия по 2 кг/га, а во второй — N 96 кг/га, Р2O5 34 кг/га и К2O 133 кг/га.
Таблица. Питание азотом и урожай ячменя, г на сосуд[efn_note]Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.[/efn_note]
Условия питания | Солома | Зерно |
---|---|---|
Азот на протяжении всего периода вегетации | 26,1 | 6,4 |
Без азота первые 15 дней | 4,5 | 0 |
Без азота от 15 до 30 дней | 19,4 | 4,2 |
Без азота от 30 до 40 дней | 29,1 | 8,7 |
Без азота от 45 до 60 дней | 29,4 | 7,7 |
Без азота после колошения | 18,6 | 3,8 |
Наибольшее количество элементов минерального питания яровые зерновые потребляют в период от выхода в трубку до колошения. В период колошения пшеница потребляет азота, фосфора и калия около 76% от максимального, ячмень — около 67% и овес — 47%.
Таблица. Потребление питательных веществ яровыми зерновыми культурами, % от максимального[efn_note]Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.[/efn_note]
Фаза роста | Пшеница | Ячмень | Овес | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
Колошение | 71 | 68 | 88 | 71 | 56 | 73 | 51 | 36 | 54 |
Цветение | 97 | 100 | 100 | 96 | 74 | 100 | 82 | 71 | 100 |
Полная спелость | 90 | 93 | 67 | 100 | 100 | 64 | 100 | 100 | 83 |
Злаковые культуры наиболее требовательны к азотному питанию в период образования ассимиляционного аппарата и в период дифференциации репродуктивных органов. Сахарная свекла нуждается в достаточном обеспечении калием во время сахаронакопления.
Таблица. Динамика потребления питательных элементов капустой, % от максимального[efn_note]Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия/Под ред. Б.А. Ягодина. — М.: Колос, 2002. — 584 с.: ил.[/efn_note]
Фаза роста | От начала вегетации | ||
---|---|---|---|
N | P2O5 | K2O | |
Рассада (10.06) | 0,17 | 0,14 | 0,12 |
Формирование кочана (27.07) | 30,5 | 21,8 | 24,2 |
Рыхлый кочан (7.09) | 96,4 | 100 | 96,6 |
Хозяйственная спелость | 100 | 90,5 | 100 |
Лен чувствителен к недостатку азотного питания в период от елочки до бутонизации, к уровню калийного питания — в период от бутонизации до цветения.
Условия питания | Масса растений, % |
---|---|
Полное питание весь период | 100 |
Без азота от «елочки» до бутонизации | 38,3 |
Без азота от бутонизации до уборки | 99,0 |
Условия питания | Число коробочек на одно растение |
---|---|
Полное питание весь период вегетации | 42 |
Без калия первые 22 дня | 43 |
Без калия от бутонизации до уборки | 9 |
Огурец требователен к азотному питанию в период формирования ассимиляционного аппарата, к фосфорному — перед цветением. В период плодоношения огурец предъявляет повышенные требования к обеспечению азотом и калием.
Усиление азотного и частично фосфорного питания в период бутонизации и цветения приводит к увеличению урожая зерновых. Повышенное питание азотом в период образования листовой массы и улучшение фосфорно-калийного питания в дальнейшем повышает урожайность корне- и клубнеплодов.
Потребность большинства культур в азотном питании уменьшается к началу плодообразования, роль фосфора и калия, наоборот, возрастает. В целом, период плодообразования отличается снижением потребления питательных веществ, а процессы жизнедеятельности в растениях к концу вегетации осуществляются преимущественно за счет реутилизации накопленных питательных веществ.
В системе удобрения основное удобрение должно обеспечивать питание растений на протяжении всего вегетационного периода, поэтому до посева вносят все органические и большую часть минеральных удобрений. Для обеспечения растений питательными веществами в начальный период вносят припосевное удобрение.
Количество и качество урожая можно регулировать подкормками в разные периоды вегетации. Подкормки улучшают питание растений в наиболее ответственные периоды или при выявлении дефицита какого-либо элемента питания.
Потребность в питательных веществах изменяется также в течение суток. Суточная периодичность отмечена почти для всех жизненных процессов растений.
В условиях искусственного питания (на питательных средах) имеют значение состав, концентрация питательного раствора, режим его использования в течение вегетации. Например, временным дефицитом питательных веществ во внешней среде в определенные периоды вегетации можно усилить развитие корневой системы, а заменой питательного раствора на воду вызвать временное голодание, стимулировав этим клубнеобразование у картофеля, завязей плодов у томата и добиться таким приемом скороспелости.
Суточная периодичность поглощения питательных веществ проявляется при переменных и постоянных условиях среды и носит характер внутреннего эндогенного ритма. Такая регулируемая суточная периодичность процессов позволяет растениям приспосабливаться к изменяющимся условиям внешней среды. Эндогенные суточные и околосуточные (циркадные) ритмы в постоянных искусственных условиях имеют тенденцию к затуханию, но восстанавливаются при меняющихся условиях. Способность растений менять циркадный ритм позволяет повысить их выживаемость.
Ритмы у растений бывают годовые, сезонные и суточные. Также отмечаются ритмы импульсного характера, с периодами от нескольких секунд до часов. Например, такие ритмы короткой активности отмечены в поглощающей и выделительной деятельности корней.
В условиях искусственного выращивания культур, представляет интерес метод периодического питания, так как позволяет без увеличения расходов повысить продуктивность растений.