Что такое временная дискретизация
Цифровое представление аналогового аудиосигнала. Краткий ликбез
Дорогие читатели, меня зовут Феликс Арутюнян. Я студент, профессиональный скрипач. В этой статье хочу поделиться с Вами отрывком из моей презентации, которую я представил в университете музыки и театра Граца по предмету прикладная акустика.
Рассмотрим теоретические аспекты преобразования аналогового (аудио) сигнала в цифровой.
Статья не будет всеохватывающей, но в тексте будут гиперссылки для дальнейшего изучения темы.
Чем отличается цифровой аудиосигнал от аналогового?
Аналоговый (или континуальный) сигнал описывается непрерывной функцией времени, т.е. имеет непрерывную линию с непрерывным множеством возможных значений (рис. 1).
Цифровой сигнал — это сигнал, который можно представить как последовательность определенных цифровых значений. В любой момент времени он может принимать только одно определенное конечное значение (рис. 2).
Аналоговый сигнал в динамическом диапазоне может принимать любые значения. Аналоговый сигнал преобразуется в цифровой с помощью двух процессов — дискретизация и квантование. Очередь процессов не важна.
Дискретизацией называется процесс регистрации (измерения) значения сигнала через определенные промежутки (обычно равные) времени (рис. 3).
Квантование — это процесс разбиения диапазона амплитуды сигнала на определенное количество уровней и округление значений, измеренных во время дискретизации, до ближайшего уровня (рис. 4).
Дискретизация разбивает сигнал по временной составляющей (по вертикали, рис. 5, слева).
Квантование приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (по горизонтали, рис. 5, справа).
Эти два процесса создают как бы координатную систему, которая позволяет описывать аудиосигнал определенным значением в любой момент времени.
Цифровым называется сигнал, к которому применены дискретизация и квантование. Оцифровка происходит в аналого-цифровом преобразователе (АЦП). Чем больше число уровней квантования и чем выше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому (рис. 6).
Уровни квантования нумеруются и каждому уровню присваивается двоичный код. (рис. 7)
Количество битов, которые присваиваются каждому уровню квантования называют разрядностью или глубиной квантования (eng. bit depth). Чем выше разрядность, тем больше уровней можно представить двоичным кодом (рис. 8).
Данная формула позволяет вычислить количество уровней квантования:
Если N — количество уровней квантования,
n — разрядность, то
Обычно используют разрядности в 8, 12, 16 и 24 бит. Несложно вычислить, что при n=24 количество уровней N = 16,777,216.
При n = 1 аудиосигнал превратится в азбуку Морзе: либо есть «стук», либо нету. Существует также разрядность 32 бит с плавающей запятой. Обычный компактный Аудио-CD имеет разрядность 16 бит. Чем ниже разрядность, тем больше округляются значения и тем больше ошибка квантования.
Ошибкой квантований называют отклонение квантованного сигнала от аналогового, т.е. разница между входным значением и квантованным значением
(
)
Большие ошибки квантования приводят к сильным искажениям аудиосигнала (шум квантования).
Чем выше разрядность, тем незначительнее ошибки квантования и тем лучше отношение сигнал/шум (Signal-to-noise ratio, SNR), и наоборот: при низкой разрядности вырастает шум (рис. 9).
Разрядность также определяет динамический диапазон сигнала, то есть соотношение максимального и минимального значений. С каждым битом динамический диапазон вырастает примерно на 6dB (Децибел) (6dB это в 2 раза; то есть координатная сетка становиться плотнее, возрастает градация).
Ошибки квантования (округления) из-за недостаточного количество уровней не могут быть исправлены.
50dB SNR
примечание: если аудиофайлы не воспроизводятся онлайн, пожалуйста, скачивайте их.
Теперь о дискретизации.
Как уже говорили ранее, это разбиение сигнала по вертикали и измерение величины значения через определенный промежуток времени. Этот промежуток называется периодом дискретизации или интервалом выборок. Частотой выборок, или частотой дискретизации (всеми известный sample rate) называется величина, обратная периоду дискретизации и измеряется в герцах. Если
T — период дискретизации,
F — частота дискретизации, то
Чтобы аналоговый сигнал можно было преобразовать обратно из цифрового сигнала (точно реконструировать непрерывную и плавную функцию из дискретных, «точечных» значении), нужно следовать теореме Котельникова (теорема Найквиста — Шеннона).
Теорема Котельникова гласит:
Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.
Вам знакомо число 44.1kHz? Это один из стандартов частоты дискретизации, и это число выбрали именно потому, что человеческое ухо слышит только сигналы до 20kHz. Число 44.1 более чем в два раза больше чем 20, поэтому все частоты в цифровом сигнале, доступные человеческому уху, могут быть преобразованы в аналоговом виде без искажении.
Но ведь 20*2=40, почему 44.1? Все дело в совместимости с стандартами PAL и NTSC. Но сегодня не будем рассматривать этот момент. Что будет, если не следовать теореме Котельникова?
Когда в аудиосигнале встречается частота, которая выше чем 1/2 частоты дискретизации, тогда возникает алиасинг — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.
Как видно из предыдущей картинки, точки дискретизации расположены так далеко друг от друга, что при интерполировании (т.е. преобразовании дискретных точек обратно в аналоговый сигнал) по ошибке восстанавливается совершенно другая частота.
Аудиопример 4: Линейно возрастающая частота от
100 до 8000Hz. Частота дискретизации — 16000Hz. Нет алиасинга.
Аудиопример 5: Тот же файл. Частота дискретизации — 8000Hz. Присутствует алиасинг
Пример:
Имеется аудиоматериал, где пиковая частота — 2500Hz. Значит, частоту дискретизации нужно выбрать как минимум 5000Hz.
Следующая характеристика цифрового аудио это битрейт. Битрейт (bitrate) — это объем данных, передаваемых в единицу времени. Битрейт обычно измеряют в битах в секунду (Bit/s или bps). Битрейт может быть переменным, постоянным или усреднённым.
Следующая формула позволяет вычислить битрейт (действительна только для несжатых потоков данных):
Битрейт = Частота дискретизации * Разрядность * Количество каналов
Например, битрейт Audio-CD можно рассчитать так:
44100 (частота дискретизации) * 16 (разрядность) * 2 (количество каналов, stereo)= 1411200 bps = 1411.2 kbit/s
При постоянном битрейте (constant bitrate, CBR) передача объема потока данных в единицу времени не изменяется на протяжении всей передачи. Главное преимущество — возможность довольно точно предсказать размер конечного файла. Из минусов — не оптимальное соотношение размер/качество, так как «плотность» аудиоматериала в течении музыкального произведения динамично изменяется.
При кодировании переменным битрейтом (VBR), кодек выбирает битрейт исходя из задаваемого желаемого качества. Как видно из названия, битрейт варьируется в течение кодируемого аудиофайла. Данный метод даёт наилучшее соотношение качество/размер выходного файла. Из минусов: точный размер конечного файла очень плохо предсказуем.
Усреднённый битрейт (ABR) является частным случаем VBR и занимает промежуточное место между постоянным и переменным битрейтом. Конкретный битрейт задаётся пользователем. Программа все же варьирует его в определенном диапазоне, но не выходит за заданную среднюю величину.
При заданном битрейте качество VBR обычно выше чем ABR. Качество ABR в свою очередь выше чем CBR: VBR > ABR > CBR.
ABR подходит для пользователей, которым нужны преимущества кодирования VBR, но с относительно предсказуемым размером файла. Для ABR обычно требуется кодирование в 2 прохода, так как на первом проходе кодек не знает какие части аудиоматериала должны кодироваться с максимальным битрейтом.
Существуют 3 метода хранения цифрового аудиоматериала:
Несжатый (RAW) формат данных
Другой формат хранения несжатого аудиопотока это WAV. В отличие от RAW, WAV содержит заголовок файла.
Аудиоформаты с сжатием без потерь
Принцип сжатия схож с архиваторами (Winrar, Winzip и т.д.). Данные могут быть сжаты и снова распакованы любое количество раз без потери информации.
Как доказать, что при сжатии без потерь, информация действительно остаётся не тронутой? Это можно доказать методом деструктивной интерференции. Берем две аудиодорожки. В первой дорожке импортируем оригинальный, несжатый wav файл. Во второй дорожке импортируем тот же аудиофайл, сжатый без потерь. Инвертируем фазу одного из дорожек (зеркальное отображение). При проигрывании одновременно обеих дорожек выходной сигнал будет тишиной.
Это доказывает, что оба файла содержат абсолютно идентичные информации (рис. 11).
Кодеки сжатия без потерь: flac, WavPack, Monkey’s Audio…
При сжатии с потерями
акцент делается не на избежание потерь информации, а на спекуляцию с субъективными восприятиями (Психоакустика). Например, ухо взрослого человек обычно не воспринимает частоты выше 16kHz. Используя этот факт, кодек сжатия с потерями может просто жестко срезать все частоты выше 16kHz, так как «все равно никто не услышит разницу».
Другой пример — эффект маскировки. Слабые амплитуды, которые перекрываются сильными амплитудами, могут быть воспроизведены с меньшим качеством. При громких низких частотах тихие средние частоты не улавливаются ухом. Например, если присутствует звук в 1kHz с уровнем громкости в 80dB, то 2kHz-звук с громкостью 40dB больше не слышим.
Этим и пользуется кодек: 2kHz-звук можно убрать.
Кодеки сжатия с потерям: mp3, aac, ogg, wma, Musepack…
Временная дискретизация звука
Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.
Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рис. 1.2).
Рис. 1.2. Временная дискретизация звука
Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую диалогового сигнала.
Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.
Глубина кодирования звука. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.
Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2I. Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:
N = 2I = 216 = 65 536.
Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):
16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.
Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).
Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.
При сохранении звука в форматах со сжатием отбрасываются «избыточные» для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).
Заключение
За недолгое время компьютер из вычислительного устройства превратился в устройство для обработки многих видов информации: текстовой, графической, звуковой; с помощью компьютера информация упаковывается и шифруется, путешествует по различным каналам связи и может быть доставлена в любой уголок мира. Современный человек уже не представляет свою деятельность без применения компьютера.
Источники
Список литературы.
2)Угринович Н. Д. Информатика и ИКТ. Базовый курс: Учебник для 8 класса
3)Информатика. Методическое пособие для учителей. 8 класс / Под редакцией профессора Н. В. Макаровой. – СПБ: Питер, 2004.
Кодирование и обработка звуковой информации
Звуковая информация. Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью и частотой.
Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука (рис. 1.1).
Рис. 1.1. Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны
Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).
Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица «децибел» (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.
Таблица 5.1. Громкость звука
Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.
Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рис. 1.2).
Рис. 1.2. Временная дискретизация звука
Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую диалогового сигнала.
Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.
Глубина кодирования звука. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.
N = 2 I = 2 16 = 65 536.
Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):
16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.
Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).
Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.
При сохранении звука в форматах со сжатием отбрасываются «избыточные» для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).
Контрольные вопросы
1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?
Задания для самостоятельного выполнения
1. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?
1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.
2. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:
а) моно, 8 битов, 8000 измерений в секунду;
б) стерео, 16 битов, 48 000 измерений в секунду.
3. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5″ (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):
а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;
б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.
Презентация по теме Временная дискретизация
Описание презентации по отдельным слайдам:
Кодирование звука Временная дискретизация
l λ Непрерывная звуковая волна Длина волны. Величина обратная частоте. Чем она больше, тем звук ниже Амплитуда колебаний. Чем она больше, тем звук громче
Основные характеристики звука Длина волны и частота: l = 1/υ Чем больше длина волны, тем меньше частота. Измеряется в количестве колебаний в секунду (1/сек) Амплитуда колебаний. Соответствует громкости звука. Громкость измеряется в децибелах (дБ)
Громкость звука Звук Громкость Нижний предел чувствительности человеческого уха 0 дБ Шорох листьев 10 дБ Разговор 60 дБ Гудок автомобиля 90 дБ Реактивный двигатель 120 дБ Болевой порог 140 дБ
Временная дискретизация звука Процесс разбиения непрерывной звуковой волны на отдельные (дискретные) временные участки, для которых может быть установлены различные уровни громкости
Частота дискретизации Для записи аналогового сигнала и его преобразования в цифровую форму используется микрофон, подключенный к звуковой карте Качество звука зависит от количества измерений уровня звука в секунду Количество измерений уровня звука в единицу времени называется частотой дискретизации Частота дискретизации лежит в диапазоне от 8 000 до 48 000 измерений в секунду
Глубина дискретизации Каждому дискретному временному отрезку – каждой «ступеньке» – присваивается определенный уровень громкости (N), для кодирования которых требуется определенный объем информации (I) Глубина кодирования звука – количество информации, необходимое для кодирования дискретных уровней громкости цифрового звука N = 2I
Пример Известна глубина кодирования – 16 бит (I). Рассчитать количество возможных уровней громкости внутри одного измерения звука (N) По формуле N = 2I находим: N = 216 = 65 536 Каждому уровню громкости присваивается одно из 65 536 значений, которое кодируется двоичными числами от 0000 0000 0000 0000 (минимальный уровень) до 1111 1111 1111 1111 (максимальный уровень)
Вопрос: назовите основные характеристики аналогового звука Частота (количество вершин на единицу длины оси абсцисс) От нее зависит высота тона звука. Измеряется в 1/сек Амплитуда (высота вершин на графике – координаты по оси ординат) От нее зависит громкость звука Измеряется в децибелах
Вопрос: назовите основные характеристики цифрового звука Частота дискретизации (количество «ступенек» на единицу длины оси абсцисс) Определяет высоту тона звука Измеряется в 1/сек Глубина дискретизации (на сколько частей может быть разбита одна «ступенька» на графике в высоту) Определяет громкость звука Измеряется в битах
Качество оцифрованного звука Чем больше величина частоты и глубины дискретизации, тем более близким к аналоговому сигналу будет приближаться цифровой звук, и тем выше будет качество звука
Качество оцифрованного звука Самое низкое качество цифрового звука (качество телефонной связи) соответствует: 8 000 измерений в секунду (1/сек) 8 бит глубины звука Один канал (моно) Битрейт: 1 8 8000 = 64000 = 62,5 кбит/сек
Качество оцифрованного звука Самое высокое качество цифрового звука (аудио-CD) соответствует: 48 000 измерений в секунду (1/сек) 16 бит глубины звука Два канала (стерео) Битрейт: 48 000 16 2 = 1 536 000 ≈ 1,5 Мбит/сек Современные аудиосистемы кроме стерео поддерживают т.н. квадрозвук – 4 канала
Информационный объем звукового файла Чем выше качество звука, тем больше требуется дискового пространства для его хранения и оперативной памяти для его обработки. Информационный объем определяется как произведение глубины и частоты дискретизации на длительность воспроизведения и на количество каналов (или произведение битрейта на длительность)
Пример Определить информационный объем 5-секундной стереозвуковой дорожки с глубиной кодирования 16 бит и частотой дискретизации 24 000 1/с Решение: 16 бит 24 000 1/сек 5 сек 2 (канала) = = 3 840 000 бит = 468,75 кБ
Программное обеспечение для работы со звуком Различают: Средства записи звука Звуковые редакторы Плееры
Хранение цифрового звука В виде аудиотреков на аудио-CD В виде звуковых файлов
Хранение цифрового звука. Audio Track Аудиотрек представляет собой формат записи звука в виде непрерывного цифрового потока. Аналогично звуковым дорожкам на виниловых дисках. Звук хранится без сжатия. Аудиодорожка воспринимается компьютером, как файл с расширением *.cda (Compact Disk Audio). Он хорошо воспроизводится плеером, но его нельзя скопировать.
Хранение цифрового звука. Звуковые файлы Наиболее распространенные форматы звуковых файлов: wav (wave) wma (Windows Media Audio) mid (midi) mp3 и др. Из них только wav хранит несжатый звук, все остальные используют сжатие
Сжатие звуковой информации При сохранении звука в форматах со сжатием происходит отбрасывание не воспринимаемых человеческим ухом частот с малой амплитудой. Сжатие до десятков раз Потеря информации, что может привести к ухудшению качества звука
Работа со сжатым звуком При работе со сжатым звуком файл сначала распаковывается и только потом поступает на обработку плеером или редактором. Для распаковки/сжатия аудио применяются специальные программы аудиокодеки (Audio Coder/Decoder)
Задание 1 Звуковая плата производит кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней громкости сигнала? Решение: 2i = 65 536 216 = 65 536 I = 16
Задание 2 Определить информационный объем 10-секундной звуковой дорожки при: Моно, 8 бит, 8 000 измерений Стерео, 16 бит, 48 000 измерений Решение: 1 8 8 000 10 = 640 000 = 78,1 (кБ) 2 16 48 000 10 = 15 360 000 = 1,83 (МБ)
*Задание 3 Определить длительность звукового файла, который может уместиться на дискете 3,5’’. Учесть, что для хранения данных на дискете доступно 2 847 секторов, объемом 512 байт каждый. Моно, 8 бит, 8 000 измерений Стерео, 16 бит, 48 000 измерений
*Задание 3. Решение Секторов Объем сектора Вместимость дискеты, бит 2 847 512 2 847 512 8 = 11 661 312 Каналов Глубина Частота Битрейт Длит-ть, сек a) 1 8 8 000 64 000 182,2 b) 2 16 48 000 1 536 000 7,6
Задание 4 Подсчитать, сколько места будет занимать одна минута цифрового стереозвука с частотой 44.1 кГц и разрядностью 16 бит Решение. Число каналов: 2 Длительность звучания: 60 сек Частота дискретизации: 44,1 * 1 000 = 44 100 Гц (44 100 1/сек) Разрядность: 16 бит Информационный объем: 2 * 60 * 44 100 * 16 = = 84 672 000 бит = = 10 584байт ≈ 10 Мб
Задание 5 Подсчитать, сколько места будет занимать две минуты цифрового стереозвука с частотой 11 кГц и разрядностью 16 бит Решение. Число каналов: 2 Длительность звучания: 2 * 60 = 120 сек Частота дискретизации: 11 * 1 000 = = 11 000 Гц (11 000 1/сек) Разрядность: 16 бит Информационный объем: 2 * 120 * 11 000 * 16 = = 42 240 000 бит = = 5 280 000байт ≈ 5 Мб
Задание 6 Подсчитать, сколько места будет занимать семь минут цифрового монозвука с частотой 22 кГц и разрядностью 8 бит Решение. Число каналов: 1 Длительность звучания: 7 * 60 = 420 сек Частота дискретизации: 22 * 1 000 = = 22 000 Гц (22 000 1/сек) Разрядность: 8 бит Информационный объем: 1 * 420 * 22 000 * 8 = = 73 920 000 бит = = 9 240 000 байт ≈ 8,8 Мб
Задание 7 Подсчитать, сколько места будет занимать три минуты цифрового стереозвука с частотой 32 кГц и разрядностью 8 бит Решение. Число каналов: 2 Длительность звучания: 3 * 60 = 180 сек Частота дискретизации: 32 * 1 000 = = 32 000 Гц (32 000 1/сек) Разрядность: 8 бит Информационный объем: 2 * 180 * 32 000 * 8 = = 92 160 000 бит = = 11 520 000 байт ≈ 11 Мб
Задание 8 Какой объем данных имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)? Решение. Число каналов: 1 Длительность звучания: 1 с Частота дискретизации: 24 * 1 000 = = 24 000 Гц (24 000 1/сек) Разрядность: 16 бит Информационный объем: 1 * 1 * 24 000 * 16 = = 384 000 бит = = 48 000 байт ≈ 47 кб
Задание 9 Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискредитации 44.1 кГц. Решение. Число каналов: 2 Длительность звучания: 20 с Частота дискретизации: 44,1 * 1 000 = = 44 100 Гц (44 100 1/сек) Разрядность: 20 бит Информационный объем: 2 * 20 * 44 100 * 20 = = 35 280 000 бит = = 4 410 000 байт ≈ 4,2 Мб
Задание 10 Определите количество уровней звукового сигнала при использовании 8-битных звуковых карт Решение. Количество возможных уровней громкости сигнала N = 2I N = 28 N = 256 Ответ: а. 256 уровней
Задание 11 Подсчитать объем файла с 10 минутной речью записанного с частотой дискретизации 11 025 Гц и разрядностью кода 4 бита на 1 измерение. Решение. Число каналов: речь принято записывать в режиме моно (1 канал) Длительность звучания: 10 * 60 = 600 сек Частота дискретизации: 11 025 Гц (11 025 1/сек) Разрядность: 4 бит Информационный объем: 1 * 600 * 11 025 * 4 = = 26 460 000 бит = = 3 307 500 байт ≈ 3,15 Мб
Задание 12 Подсчитать время звучания звукового файла объемом 3,5 Мбайт, содержащего стереозапись с частотой дискретизации 44 100 Гц и разрядностью кода 16 бит на 1 измерение Решение. Число каналов: 2 Длительность звучания: Х Частота дискретизации: 44 100 Гц (44 100 1/сек) Разрядность: 16 бит Информационный объем: 2 * Х * 44 100 * 16 = 3,5 (Мб) 1 411 200*Х = 29 360 128 Х = 20,8 (сек)
Задание 13 В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? Решение. Число каналов: X. Пусть Х=1 Длительность звучания: 60 сек Частота дискретизации: Y Разрядность: Z (8 или 16) Информационный объем: 2,6Мб = 21 810 381 бит 1 * 60 * Y * Z = 21 810 381 YZ = 363 506,35 При Y=8 Z=45438 Гц = 45,44 кГц ≈ 44,1 кГц (standard) При Y=8 Z=22719 Гц = 22,72 кГц ≈ 22,05 кГц (standard)
Задание14 Объем свободной памяти на диске 5,25 Мб, разрядность звуковой платы 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? Решение. Число каналов: неизвестно, принимаем 1 Длительность звучания: Х Частота дискретизации: 22,05 * 1 000 = 22 500 Гц Разрядность: 16 бит Информационный объем: 5,25 Мб = 44 040 192 бит 1 * Х * 22500 * 16 = 5,25 (Мб) 360 000*Х = 44 040 192 Х = 122,3 (сек)
Задание 12 Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы 8. С какой частотой дискретизации записан звук? Решение. Число каналов: X. Пусть Х=1 Длительность звучания: 60 сек Частота дискретизации: Y Разрядность: 8 бит Информационный объем: 1 * 60 * Y * 8 = 1,3 (Мб) 480Y = 10 905 190 (бит) Х ≈ 22 719 (бит/сек) Х ≈ 22,05 кБит/сек (st.)
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс профессиональной переподготовки
Информатика: теория и методика преподавания в образовательной организации
Курс повышения квалификации
Современные педтехнологии в деятельности учителя
Ищем педагогов в команду «Инфоурок»
Информатика включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и конкретные, например разработка языков программирования и протоколов передачи данных.
Номер материала: ДБ-1662403
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В Москве новогодние каникулы в школах могут начаться с 27 декабря
Время чтения: 1 минута
В Хабаровском крае введут уроки по вакцинации в некоторых школах и колледжах
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В МГУ заработала университетская квантовая сеть
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.











