Что такое десятичный эквивалент
Десятичное число 1439 =
== двоично-десятичному числу 1010000111001 (3 нуля в начале опущены) Написание:
Написание числа 1439 в двоично-десятичной системе
5.3. Вычисление десятичного эквалента двоичного числа 10110011111
Вычисленный десятичный эквивалент
Буквы. Шестая и седьмая дорожки совместно с дорожками, предназначенными для кодирования цифр, используются для кодирования букв и специальных знаков. Рис. 5.7 показывает, что существует определенная система кодирования букв (английского) алфавита, хотя код ASCII несколько отличается от кода EIA244A. В коде ASCII алфавит кодируется пробиванием отверстий в шестой и седьмой дорожках с добавлением чисто двоичного кода номера буквы от 1 до 26 на дорожках с первой по пятую, поскольку в алфавите 26 букв. Код EIA244A следует двоично-десятичное системе счисления за счет разделения алфавита на три группы по десять букв. Группы кодируются следующим образом.
Буквы алфавита от А до I: отверстия в шестой и седьмой дорожках; буквы от J до R: отверстия в седьмой дорожке; буквы от S до Z: отверстия в шестой дорожке. Внутри группы цифры нумеруются с 1 до 9 в двоичной системе.
Внимательный читатель уже вероятно заметил некоторое несоответствие в описании процедуры кодирования букв в коде EIA244A. Ведь алфавит состоит из 26 букв, а не из 27, поэтому «три группы по девять букв» оставляют одну комбинацию неиспользованной. Сможете ли вы определить по рис. 5.7, какая комбинация пропущена и какому месту в алфавите это соответствует?
Проверка четности. Пятая дорожка в коде EIA244A и восьмая дорожка в коде ASCII зарезервированы для проверки надежности перфоратора и устройства считывания программы, установленного на станке. По установленному жесткому правилу число отверстий в каждом горизонтальном ряду всегда должно быть четным (в случае кода EIA244A) или нечетным (в случае кода ASCII). Это правило называется проверкой четности (или нечетности в зависимости от кода). Поскольку некоторым знакам двоично-десятичного кода соответствует четное количество отверстий, а некоторым — нечетное, дорожка четности используется для добавления в случае необходимости отверстия, обеспечивающего четность (или нечетность) каждого горизонтального ряда. Цель этой операции сейчас будет объяснена.
Чтобы распечатать файл, скачайте его (в формате Word).
Как записать десятичный эквивалент числа
Вычислите десятичные эквиваленты следующих двоичных чи-
сел:
1112
10102
110112
1011012
так надо написать на 5
Здравствуйте! На рисунке изображён график функции у =f(х). Точки a, b, с, d и е задают на оси х четыре интервала. Помогите пользуясь ( Подробнее. )
2. В чем заключается принцип Ферма?
Плата за телефон составляет 350 рублей в месяц. В следующем году она увеличится на 12%. Сколько рублей придётся платить ежемесячно за ( Подробнее. )
Приведите примеры информации, которая в конкретной ситуа-
ции является:
актуальной (своевременной)/неактуальной ( Подробнее. )
От разведчика была получена шифрованная радиограмма, пере-
данная с использованием азбуки Морзе. При передаче радио-
граммы ( Подробнее. )
Ответ оставил Гуру
Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Информатика.
Помогите записать десятичные эквиваленты чисел, не понимаю как это сделать.172 (8) (восьмёрка в учебнике записана маленьким шрифтом внизу) 2EA(16) 101010(2) 10,1(2) 243(6)
Лучший ответ:
Цифры записанные внизу указывают систему счисления
172₈ – число записано в восьмеричной системе счисления. Требуется перевести его в десятичной системе счисления.
172₈ = 1*8² 7*8¹ 2*8⁰ = 64 56 2 = 122₁₀ – т.е. 122 в десятичной
2ЕА₁₆ = 2*16² 14*16¹ 10*16⁰ = 512 224 10 = 746₁₀
101010₂ = 1*2⁵ 0*2⁴ 1*2³ 0*2² 1*2¹ 0*2⁰ = 32 0 8 0 2 0 = 42₁₀
10,1₂ = 1*2¹ 0*2⁰ 1*2⁻¹ = 2 0 1/2 = 2,5₁₀
243₆ = 2*6² 4*6¹ 3*6⁰ = 72 24 3 = 99₁₀
Двоичные числа и двоичная арифметика
Принцип представления чисел в позиционных системах счисления
Позиционной называется система счисления, в которой вес разряда числа определяется его позицией в записи числа [1].
сотни десятки единицы десятые доли сотые доли
Аналогично любое число в десятичной системе счисления можно представить в виде подобной суммы:
( 11.1) |
Для числа в системе счисления с основанием выражение (11.1) преобразуется к виду:
( 11.2) |
Название системы счисления | Основание системы счисления | Знаки, использующиеся для записи чисел |
---|---|---|
Двоичная | 2 | 0, 1 |
Троичная | 3 | 0, 1, 2 |
Четверичная | 4 | 0, 1, 2, 3 |
… | … | … |
Восьмеричная | 8 | 0, 1, 2, 3, 4, 5, 6, 7 |
… | … | … |
Десятичная | 10 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
… | … | … |
Шестнадцатеричная | 16 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |
… | … | … |
Приведем примеры записи чисел в указанных системах и найдем их десятичные эквиваленты по формуле (11.2).
Для двоичного числа:
Для восьмеричного числа:
Для шестнадцатеричного числа:
Округление относится к дробной части числа, целая часть переводится точно. Особенностью перевода из шестнадцатеричного кода в десятичный код является то, что в качестве коэффициента используется десятичный эквивалент шестнадцатеричного знака в соответствии с таблицей 11.2. Для нашего примера вместо знака »
» в расчетную формулу (11.2) подставляется десятичное число
.
Из рассмотренных примеров видно, что общая формула (11.2) может использоваться для перевода числа из системы счисления с любым основанием в десятичную.
Перевод чисел из одной системы счисления в другую
Перевод из десятичной системы в любую другую. Перевод целых чисел
Проверка перевода осуществляется по формуле (11.2), так, как это показано ниже на примерах.
Пример. Перевести десятичное число 125 в двоичную, восьмеричную и шестнадцатеричную системы счисления. Проверить результаты по формуле (П11.2).
В рассмотренном примере при переводе вместо коэффициента используется его десятичный эквивалент
в соответствии с таблицей 11.2.
Перевод из двоичной системы в шестнадцатеричную (восьмеричную)
Как уже было сказано выше, шестнадцатеричный и восьмеричный коды используются для более компактной и удобной записи двоичных чисел. Так, программирование в машинных кодах осуществляется в большинстве случаев в шестнадцатеричном коде. Правила перевода для шестнадцатеричной и восьмеричной системы структурно одинаковы, отличия для восьмеричной системы отображаются в скобках.
Двоичная запись числа делится на группы по четыре ( три ) двоичных знака влево и вправо от запятой, отделяющей целые и дробные части Неполные крайние группы (если они есть) дополняются нулями до четырех ( трех ) знаков. Каждая группа заменяется одним шестнадцатеричным ( восьмеричным ) знаком в соответствии с кодом группы (табл. 11.2).
Двоичная группа | Шестнадцатеричный знак | Десятичный эквивалент | Двоичная группа | Восьмеричный знак |
---|---|---|---|---|
0000 | 0 | 0 | 000 | 0 |
0001 | 1 | 1 | 001 | 1 |
0010 | 2 | 2 | 010 | 2 |
0011 | 3 | 3 | 011 | 3 |
0100 | 4 | 4 | 100 | 4 |
0101 | 5 | 5 | 101 | 5 |
0110 | 6 | 6 | 110 | 6 |
0111 | 7 | 7 | 111 | 7 |
1000 | 8 | 8 | ||
1001 | 9 | 9 | ||
1010 | A | 10 | ||
1011 | B | 11 | ||
1100 | C | 12 | ||
1101 | D | 13 | ||
1110 | E | 14 | ||
1111 | F | 15 |
Перевод из шестнадцатеричной (восьмеричной) системы в двоичную
Каждая цифра (без всяких сокращений!) шестнадцатеричного ( восьмеричного ) числа заменяется одной двоичной группой из четырех ( трех ) двоичных знаков (табл. 11.2).
Как показано в примерах, крайние нули слева и справа при желании можно не писать, но такое сокращение делается уже после перевода в двоичную систему.
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Перевод в десятичную систему счисления
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
Большая Энциклопедия Нефти и Газа
Десятичный эквивалент
Десятичный эквивалент такого числа всегда положителен. [1]
Десятичные эквиваленты разрядов искомого числа находим, пользуясь примером на стр. [2]
Десятичными эквивалентами чисел А и В являются 46202483 и 24600224 соответственно. Предположим также, что импульсы в машине следуют один за другим через / мксек, так что двоичные цифры слова передаются одна за другой каждую микросекунду. По мере того как оба аргумента разряд за разрядом продвигаются в сумматор, разряд за разрядом формируется и результат; частичные результаты помещаются в аккумуляторе перед ( в да ином случае левее) частично использованного первого аргумента, как это показано на рисунках. [3]
Как только десятичный эквивалент кода на выходе одного из счетчиков станет равным 9, на выходе этого логического устройства формируется низкий уровень, блокирующий тактовые генераторы ГТ1, ГТ2 и ГТЗ. В дальнейшем изменений положения включенного светодиода в линейках Н ] и Н2 не происходит. [4]
Когда десятичный эквивалент дополнительного кода отрицательной величины с фиксированной точкой определен с помощью таблицы преобразования, его следует вычесть из максимальной отрицательной величины с фиксированной точкой, представленной полем длиной в полуслово. [5]
Аналогично определяется десятичный эквивалент сомножителя У. [6]
С учетом десятичного эквивалента ( веса) каждого разряда, приведенного в табл. 4.3, перевод двоичных чисел в привычную нам десятичную систему счисления не представляет большого труда. [9]
Параметр л заменяется десятичным эквивалентом этого бита. Если значения всех входов Рп есть степени с основанием 2, n может быть заменен двоичным порядком. [12]
Параметр л заменяется десятичным эквивалентом этого бита. Если значения всех входов Рп есть степени с основанием 2, п может быть заменен двоичным порядком. [14]