Что такое докер простыми словами

Docker. Зачем и как

Есть множество прекрасных публикаций для тех, кто уже пользуется docker-ом. Есть хорошие статьи для тех, кто хочет этому научиться. Я пишу для тех, кто не только не знает, что такое docker, но и не уверен стоит ли ему это знать.

Я сознательно опускаю некоторые технические подробности, а кое где допускаю упрощения. Если вы увидите, что docker – то, что вам нужно, вы легко найдете более полную и точную информацию в других статьях.

Начну я с описания нескольких типичных проблем.

Проблемы

Первая проблема — как передать продукт клиенту.

Предположим у вас есть серверный проект, который вы закончили и теперь его необходимо передать пользователю. Вы готовите много разных файликов, скриптов и пишите инструкцию по установке. А потом тратите уйму времени на решения проблем клиента вроде: «у меня ничего не работает», «ваш скрипт упал на середине — что теперь делать», «я перепутал порядок шагов в инструкции и теперь не могу идти дальше» и т. п.

Всё усугубляется если продукт тиражируемый и вместо одного клиента у вас сотни или тысячи покупателей. И становится еще сложнее, если вспомнить о необходимости установки новых версий продукта.

Вторая проблема — тиражируемость. Пусть вам нужно поднять 5 (или 50) почти одинаковых серверов. Делать это вручную долго, дорого и подвержено ошибкам.

Наконец, третья проблема — переиспользуемость. Предположим у вас есть отдел, который делает браузерные игры. Предположим, что их у вас уже несколько. И все они используют один и тот же технологический стэк (например — java-tomcat-nginx-postgre). Но при этом, чтобы поставить новую игру вы вынуждены заново подготавливать на новом сервере почти одинаковую конфигурацию. Вы не можете просто так взять и сказать — «хочу сервер, как в игре странники но только с другим веб архивом»

Обычные решения

Как обычно решаются эти проблемы.

Установочный скрипт

Первый подход я уже упомянул — вы можете написать скрипт, который установит всё, что вам нужно и запускать его на всех нужных серверах. ( Скрипт может быть как простым sh файлом, так и чем-то сложным, созданным с использованием специальных инструментов).

Недостатки этого подхода — хрупкость и неустойчивость к ошибкам. Как бы хорошо не был написан скрипт, рано или поздно на какой-то машине он упадёт. И после этого падения машина фактически окажется «испорченной» — просто так «откатить» те действия, которые скрипт успел выполнить, у вашего клиента не получится.

Облачные сервисы

Второй подход — использование облачных сервисов. Вы вручную устанавливаете на виртуальный сервер всё, что вам нужно. Затем делаете его image. И далее клонируете его столько раз, сколько вам надо.

Недостатка здесь два. Во-первых, vendor-lock-in. Вы не можете запускать свое решение вне выбранного облака, что не всегда удобно и может привести к потерям несогласных с этим выбором клиентов. Во-вторых, облака медленны. Виртуальные (и даже «bare-metal») сервера предоставляемые облаками на сегодняшний день сильно уступают по производительности dedicated серверам.

Виртуальные машины

Третий подход — использование виртуальных машин. Здесь тоже есть недостатки:

Размер — не всегда удобно качать образ виртуальной машины, который может быть довольно большим. При этом, любое изменение внутри образа виртуальной машины требует скачать весь образ заново.

Сложное управление совместным использованием серверных ресурсов — не все виртуальные машины вообще поддерживают совместное использование памяти или CPU. Те что поддерживают, требуют тонкой настройки.

Подход докера — контейнеризация

И вот тут появляется docker, в котором

Как работает docker

Создание образа

Сначала создается docker image (или образ). Он создается при помощи скрипта, который вы для этого пишете.
Образы наследуются и, обычно, для создания своего первого образа мы берём готовый образ и наследуемся от него.
Чаще всего мы берем образ в котором содержится та или иная версия linux. Скрипт тогда начинается как-то так:

Кроме этого, мы можем копировать в наш образ любые локальные файлы при помощи директивы COPY.

Докер поддерживает гораздо больше различных директив. Например, директива USER roman говорит докеру что все следующие директивы нужно выполнять из под пользователя roman. А директива ENTRYPOINT [“/opt/tomcat/catalina.sh”] задает исполняемый файл, который будет запускаться при старте.

Я не буду перечислять все остальные директивы — в этом нет смысла. Здесь главное — принцип: вы создаёте вот такой скрипт, называете его Dockerfile и запускаете команду docker build, docker выполняет скрипт и создает image.

Если в процессе возникают какие-то ошибки, докер о них сообщает и вы их исправляете. То есть исправление скрипта происходит на этапе создания image. На этапе установки скрипт уже не используется.

Создание контейнера

Когда у вас уже есть docker image вы можете создать из него контейнер на любом физическом сервере, где установлен докер. Если image – это тиражируемый образ некоторой «машины», то container это уже сама «машина», которую можно запускать и останавливать.

Важный момент — при создании контейнера из image, его можно параметризовать. Вы можете передавать докеру переменные окружения, которые он использует при создании контейнера из image. Так вы сможете создавать немного разные машины из одного образа. Например, передать образу web-сервера его доменное имя.

Хорошей практикой в докере считается «упаковка» в один контейнер ровно одного постоянно работающего серверного процесса. Как я уже упоминал, этот процесс работает на уровне физического сервера и честно регулируется установленной там операционной системой. Поэтому, в отличие от виртуальных машин, контейнеры докера не требуют специального управления памятью и процессорами. Использование ресурсов становится простым и эффективным.

Union filesystem

Ок — память и процессор используется эффективно. А как насчёт файловой системы? Ведь если у каждого контейнера докера своя собственная копия операционной системы, то мы получим ту же проблему, что и с виртуальными машинами — тяжеловесные образы, которые содержат одно и тоже.

На самом деле в докере это не так. Если вы используете 100500 контейнеров, основанных на одном и том же образе операционной системы, то файлы этой системы будут скачаны докером ровно один раз. Это достигается за счёт использования докером union file system.

Union file system состоит из слоёв (layers). Слои как бы наложены друг на друга. Некоторые слои защищены от записи. Например, все наши контейнеры используют общие защищенные от записи слои, в которых находятся неизменяемые файлы операционной системы.

Для изменяемых файлов каждый из контейнеров будет иметь собственный слой. Естественно, докер использует такой подход не только для операционной системы, но и для любых общих частей контейнеров, которые были созданы на основе общих «предков» их образов.

Container registry

Получается, что docker image состоит из слоёв. И хорошо было бы уметь скачивать на наш сервер только те слои, которых на нём пока нет. Иначе для установки 100 контейнеров, основанных на Ubuntu мы скачаем Ubuntu внутри их образов 100 раз. Зачем?

Хорошая новость в том, что докер решает эту проблему. Докер предоставляет специальный сервис, называемый docker registry. Docker registry предназначен для хранения и дистрибуции готовых образов. Собрав новый образ (или новую версию образа) вы можете закачать его в docker registry. Соответственно, потом его можно скачать оттуда на любой сервер. Главная фишка здесь в том, что физически качаться будут только те слои, которые нужны.

Например, если вы создали новую версию образа, в котором поменяли несколько файлов, то в registry будут отправлены только слои, содержащие эти файлы.

Аналогично, если сервер качает из registry какой-то образ, скачаны будут только слои, отсутствующие на сервере.
Docker registry существует и как общедоступный сервис и как open source проект, доступный для скачивания и установки на собственной инфрастуктуре.

Использование контейнеров

Созданные контейнеры можно запускать, останавливать, проверять их статус и т д. При создании контейнера можно дополнительно передать докеру некоторые параметры. Например, попросить докер автоматически рестартовать контейнер, если тот упадёт.

Взаимодействие между контейнерами

Если контейнеров на сервере несколько, управлять ими вручную становится проблематично. Для этого есть технология docker compose. Она существует поверх докера и просто позволяет управлять контейнерами на основе единого конфигурационного файла, в котором описаны контейнеры, их параметры и их взаимосвязи (например контейнер A имеет право соединяться с портом 5432 контейнера B)

Выводы

Таким образом докер очень хорошо подходит для решения перечисленных выше задач:

Источник

Что такое Docker: краткий экскурс в историю и основные абстракции

10 августа в Слёрм стартовал видеокурс по Docker, в котором мы разбираем его полностью — от основных абстракций до параметров сети.

В этой статье поговорим об истории появления Docker и его основных абстракциях: Image, Cli, Dockerfile. Лекция рассчитана на новичков, поэтому вряд ли будет интересна опытным пользователям. Здесь не будет крови, аппендикса и глубокого погружения. Самые основы.

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

Что такое Docker

Посмотрим на определение Docker из Википедии.

Docker — это программное обеспечение для автоматизации развёртывания и управления приложениями в средах с поддержкой контейнеризации.

Из этого определения ничего непонятно. Особенно непонятно, что значит «в средах с поддержкой контейнеризации». Чтобы разобраться, вернёмся в прошлое. Начнём с эпохи, которую я условно называю «Монолитной эрой».

Монолитная эра

Монолитная эра — это начало 2000-х, когда все приложения были монолитными, с кучей зависимостей. Разработка шла долго. При этом серверов было не так много, мы все их знали по именам и мониторили. Есть такое забавное сравнение:

Pets — это домашние животные. В монолитной эре мы относились к своим серверам, как к домашним животным, холили и лелеяли, пылинки сдували. А для лучшего управления ресурсами использовали виртуализацию: брали сервер и пилили на несколько виртуальных машин, тем самым обеспечивая изоляцию окружения.

Системы виртуализации на базе гипервизора

Про системы виртуализации наверняка все слышали: VMware, VirtualBox, Hyper-V, Qemu KVM и т. д. Они обеспечивают изоляцию приложений и управление ресурсами, но у них есть и минусы. Чтобы сделать виртуализацию, нужен гипервизор. А гипервизор — это оверхед ресурсов. Да и сама виртуальная машина обычно целая махина — тяжелый образ, на нём операционная система, Nginx, Apache, возможно и MySQL. Образ большой, виртуальной машиной неудобно оперировать. Как следствие, работа с виртуалками может быть медленной. Чтобы решить эту проблему, создали системы виртуализации на уровне ядра.

Системы виртуализации на уровне ядра

Виртуализацию на уровне ядра поддерживают системы OpenVZ, Systemd-nspawn, LXC. Яркий пример такой виртуализации — LXC (Linux Containers).

LXC — система виртуализации на уровне операционной системы для запуска нескольких изолированных экземпляров операционной системы Linux на одном узле. LXC не использует виртуальные машины, а создаёт виртуальное окружение с собственным пространством процессов и сетевым стеком.

По сути LXC создаёт контейнеры. В чём разница между виртуальными машинами и контейнерами?

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

Контейнер не подходит для изолирования процессов: в системах виртуализации на уровне ядра находят уязвимости, которые позволяют вылезти из контейнера на хост. Поэтому если вам нужно что-то изолировать, то лучше использовать виртуалку.

Различия между виртуализацией и контейнеризацией можно увидеть на схеме.
Бывают аппаратные гипервизоры, гипервизоры поверх ОС и контейнеры.

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

«Железные» гипервизоры — это крутая штука, если вы действительно хотите что-то изолировать. Потому что там есть возможность изолировать на уровне страниц памяти, процессоров.

Есть гипервизоры как программа, и есть контейнеры, о них мы и будем говорить дальше. В системах контейнеризации гипервизора нет, но есть Container Engine, который создаёт контейнеры и управляет ими. Штука это более легковесная, поэтому за счет работы с ядром оверхед меньше, или его нет совсем.

Что используется для контейнеризации на уровне ядра

Основные технологии, которые позволяют создавать изолированный от других процессов контейнер, — это Namespaces и Control Groups.

Namespaces: PID, Networking, Mount и User. Есть ещё, но для простоты понимания остановимся на этих.

PID Namespace ограничивает процессы. Когда мы, например, создаём PID Namespace, помещаем туда процесс, то он становится с PID 1. Обычно в системах PID 1 — это systemd или init. Соответственно, когда мы помещаем процесс в новый namespace, он тоже получает PID 1.

Networking Namespace позволяет ограничить/изолировать сеть и внутри уже размещать свои интерфейсы. Mount — это ограничение по файловой системе. User — ограничение по юзерам.

Control Groups: Memory, CPU, IOPS, Network — всего около 12 настроек. Иначе их ещё называют Cgroups («Cи-группы»).

Control Groups управляют ресурсами для контейнера. Через Control Groups мы можем сказать, что контейнер не должен потреблять больше какого-то количества ресурсов.

Чтобы контейнеризация полноценно работала, используются дополнительные технологии: Capabilities, Copy-on-write и другие.

Capabilities — это когда мы говорим процессу, что он может делать, а чего не может. На уровне ядра это просто битовые карты со множеством параметров. Например, пользователь root имеет полные привилегии, может делать всё. Сервер времени может изменять системное время: у него есть capabilities на Time Capsule, и всё. С помощью привилегий можно гибко настроить ограничения для процессов, и тем самым обезопасить себя.

Система Copy-on-write позволяет нам работать с образами Docker, использовать их более эффективно.

На данный момент Docker имеет проблемы с совместимостью Cgroups v2, поэтому в статье рассматриваются именно Cgroups v1.

Но вернёмся к истории.

Когда появились системы виртуализации на уровне ядра, их начали активно применять. Оверхед на гипервизор пропал, но некоторые проблемы остались:

Чтобы все эти проблемы решить, пришла следующая эра.

Эра контейнеров

Когда наступила Эра контейнеров, сменилась философия работы с ними:

Помните, я говорил про pets vs cattle? Раньше инстансы были подобны домашним животным, а теперь стали как cattle — скот. Раньше был монолит — одно приложение. Теперь это 100 микросервисов, 100 контейнеров. У каких-то контейнеров может быть по 2-3 реплики. Нам становится не столь важно контролировать каждый контейнер. Нам скорее важна доступность самого сервиса: того, что делает этот набор контейнеров. Это меняет подходы в мониторинге.

В 2014-2015 годах случился расцвет Docker — той технологии, о которой мы и будем сейчас говорить.

Docker изменил философию и стандартизировал упаковку приложения. С помощью Docker мы можем упаковать приложение, отправить его в репозиторий, скачать оттуда, развернуть.

В Docker-контейнер мы закладываем всё необходимое, поэтому решается проблема зависимостей. Docker гарантирует воспроизводимость. Я думаю, многие сталкивались с невоспроизводимостью: у тебя всё работает, пушишь на продакшен, там это перестает работать. С Docker эта проблема уходит. Если твой Docker-контейнер запускается и делает то, что требуется делать, то с большой долей вероятности он запустится на продакшене и там сделает то же самое.

Отступление про оверхед

По поводу оверхед постоянно идут споры. Кто-то считает, что Docker не несёт дополнительную нагрузку, так как использует ядро Linux и все его процессы, необходимые для контейнеризации. Мол, «если вы говорите, что Docker — это оверхед, то тогда и ядро Linux оверхед».

С другой стороны, если углубиться, то в Docker и правда есть несколько вещей, про которые с натяжкой можно сказать, что это оверхед.

Первое — это PID namespace. Когда мы в namespace помещаем какой-то процесс, ему присваивается PID 1. В то же время у этого процесса есть ещё один PID, который находится на хостовом namespace, за пределами контейнера. Например, мы запустили в контейнере Nginx, он стал PID 1 (мастер-процесс). А на хосте у него PID 12623. И сложно сказать, насколько это оверхед.

Вторая штука — это Cgroups. Возьмём Cgroups по памяти, то есть возможность ограничивать контейнеру память. При её включении активируются счётчики, memory accounting: ядру надо понимать, сколько страниц выделено, а сколько ещё свободно для этого контейнера. Это возможно оверхед, но точных исследований о том, как он влияет на производительность, я не встречал. И сам не замечал, что приложение, запущенное в Docker, вдруг резко теряло в производительности.

И ещё одно замечание о производительности. Некоторые параметры ядра прокидываются с хоста в контейнер. В частности, некоторые сетевые параметры. Поэтому если вы хотите запустить в Docker что-то высокопроизводительное, например то, что будет активно использовать сеть, то вам, как минимум, надо эти параметры подправить. Какой-нибудь nf_conntrack, к примеру.

О концепции Docker

Docker состоит из нескольких компонентов:

Схематично это выглядит примерно вот так:

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

На Docker_host работает Docker daemon, запускает контейнеры. Есть Client, который передаёт команды: собери образ, скачай образ, запусти контейнер. Docker daemon ходит в registry и выполняет их. Docker-клиент может обращаться и локально (к юникс-сокету), и по TCP с удалённого хоста.

Пройдёмся по каждому компоненту.

Docker daemon (демон) — это серверная часть, она работает на хост-машине: скачивает образы и запускает из них контейнеры, создаёт сеть между контейнерами, собирает логи. Когда мы говорим «создай образ», этим тоже занимается демон.

Docker CLI — клиентская часть Docker, консольная утилита для работы с демоном. Повторю, она может работать не только локально, но и по сети.

Базовые команды:

docker ps — показать контейнеры, которые сейчас запущены на Docker-хосте.
docker images — показать образы, скачанные локально.
docker search <> — поиск образа в registry.
docker pull <> — скачать образ из registry на машину.
docker build — собрать образ.
docker run <> — запуск контейнер.
docker rm <> — удалить контейнер.
docker logs <> — логи контейнера
docker start/stop/restart <> — работа с контейнером

Если вы освоите эти команды и будете уверенно ими пользоваться, то считайте, что на 70% освоили Docker на уровне пользователя.

Dockerfile — инструкция для создания образа. Почти каждая команда инструкции — новый слой. Посмотрим на примере.

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

Примерно так выглядит Dockerfile: слева команды, справа — аргументы. Каждая команда, что здесь есть (и вообще пишется в Dockerfile), создаёт новый слой в Image.

Даже глядя на левую часть, можно примерно понять, что происходит. Мы говорим: «создай нам папку» — это один слой. «Сделай папку рабочей» — это ещё один слой, и так далее. Слоёный пирог упрощает жизнь. Если я создам ещё один Dockerfile и в последней строчке что-то изменю — запущу не «python» «main.py», а что-нибудь другое, или установлю зависимости из другого файла — то предыдущие слои будут переиспользованы, как кеш.

Image — это упаковка контейнера, из образа запускаются контейнеры. Если смотреть на Docker с точки зрения пакетного менеджера (как будто мы работаем с deb или rpm-пакетами), то image — это по сути rpm-пакет. Через yum install мы можем поставить приложение, удалить его, найти в репозитории, скачать. Здесь примерно то же самое: из образа запускаются контейнеры, они хранятся в Docker registry (по аналогии с yum, в репозитории), и каждый image имеет хеш SHA-256, имя и тег.

Image собирается по инструкции из Dockerfile. Каждая инструкция из Dockerfile создаёт новый слой. Слои могут использоваться повторно.

Docker registry — это репозиторий образов Docker. По аналогии с ОС, у Docker есть общедоступный стандартный реестр — dockerhub. Но можно собрать свой репозиторий, свой Docker registry.

Container — то, что запускается из образа. По инструкции из Dockerfile собрали образ, затем мы его из этого образа запускаем. Этот контейнер изолирован от остальных контейнеров, он должен содержать в себе всё необходимое для работы приложения. При этом один контейнер — один процесс. Случается, что приходится делать два процесса, но это несколько противоречит идеологии Docker.

Требование «один контейнер — один процесс» связано с PID Namespace. Когда в Namespace запускается процесс с PID 1, если он вдруг умрёт, то весь контейнер тоже умирает. Если же там запущено два процесса: один живёт, а второй умер, то контейнер всё равно продолжит жить. Но это к вопросу Best Practices, мы про них поговорим в других материалах.

Более детально изучить особенности и полную программу курса можно по ссылке: «Видеокурс по Docker».

Автор: Марсель Ибраев, сертифицированный администратор Kubernetes, практикующий инженер в компании Southbridge, спикер и разработчик курсов Слёрм.

Источник

Понимая Docker

Уже несколько месяцев использую docker для структуризации процесса разработки/доставки веб-проектов. Предлагаю читателям «Хабрахабра» перевод вводной статьи о docker — «Understanding docker».

Что такое докер?

Докер — это открытая платформа для разработки, доставки и эксплуатации приложений. Docker разработан для более быстрого выкладывания ваших приложений. С помощью docker вы можете отделить ваше приложение от вашей инфраструктуры и обращаться с инфраструктурой как управляемым приложением. Docker помогает выкладывать ваш код быстрее, быстрее тестировать, быстрее выкладывать приложения и уменьшить время между написанием кода и запуска кода. Docker делает это с помощью легковесной платформы контейнерной виртуализации, используя процессы и утилиты, которые помогают управлять и выкладывать ваши приложения.

В своем ядре docker позволяет запускать практически любое приложение, безопасно изолированное в контейнере. Безопасная изоляция позволяет вам запускать на одном хосте много контейнеров одновременно. Легковесная природа контейнера, который запускается без дополнительной нагрузки гипервизора, позволяет вам добиваться больше от вашего железа.

Для чего я могу использовать docker?

Быстрое выкладывание ваших приложений

Docker прекрасно подходит для организации цикла разработки. Docker позволяет разработчикам использовать локальные контейнеры с приложениями и сервисами. Что в последствии позволяет интегрироваться с процессом постоянной интеграции и выкладывания (continuous integration and deployment workflow).

Например, ваши разработчики пишут код локально и делятся своим стеком разработки (набором docker образов) с коллегами. Когда они готовы, отравляют код и контейнеры на тестовую площадку и запускают любые необходимые тесты. С тестовой площадки они могут оправить код и образы на продакшен.

Более простое выкладывание и разворачивание

Основанная на контейнерах docker платформа позволят легко портировать вашу полезную нагрузку. Docker контейнеры могут работать на вашей локальной машине, как реальной так и на виртуальной машине в дата центре, так и в облаке.

Портируемость и легковесная природа docker позволяет легко динамически управлять вашей нагрузкой. Вы можете использовать docker, чтобы развернуть или погасить ваше приложение или сервисы. Скорость docker позволяет делать это почти в режиме реального времени.

Высокие нагрузки и больше полезных нагрузок

Docker легковесен и быстр. Он предоставляет устойчивую, рентабельную альтернативу виртуальным машинам на основе гипервизора. Он особенно полезен в условиях высоких нагрузок, например, при создания собственного облака или платформа-как-сервис (platform-as-service). Но он так же полезен для маленьких и средних приложений, когда вам хочется получать больше из имеющихся ресурсов.

Главные компоненты Docker

Архитектура Docker

Docker использует архитектуру клиент-сервер. Docker клиент общается с демоном Docker, который берет на себя тяжесть создания, запуска, распределения ваших контейнеров. Оба, клиент и сервер могут работать на одной системе, вы можете подключить клиент к удаленному демону docker. Клиент и сервер общаются через сокет или через RESTful API.

Что такое докер простыми словами. Смотреть фото Что такое докер простыми словами. Смотреть картинку Что такое докер простыми словами. Картинка про Что такое докер простыми словами. Фото Что такое докер простыми словами

Docker-демон

Как показано на диаграмме, демон за пускается на хост-машине. Пользователь не взаимодействует с сервером на прямую, а использует для этого клиент.

Docker-клиент

Docker-клиент, программа docker — главный интерфейс к Docker. Она получает команды от пользователя и взаимодействует с docker-демоном.

Внутри docker-а

Образы

Docker-образ — это read-only шаблон. Например, образ может содержать операционку Ubuntu c Apache и приложением на ней. Образы используются для создания контейнеров. Docker позволяет легко создавать новые образы, обновлять существующие, или вы можете скачать образы созданные другими людьми. Образы — это компонента сборки docker-а.

Реестр

Docker-реестр хранит образы. Есть публичные и приватные реестры, из которых можно скачать либо загрузить образы. Публичный Docker-реестр — это Docker Hub. Там хранится огромная коллекция образов. Как вы знаете, образы могут быть созданы вами или вы можете использовать образы созданные другими. Реестры — это компонента распространения.

Контейнеры

Контейнеры похожи на директории. В контейнерах содержится все, что нужно для работы приложения. Каждый контейнер создается из образа. Контейнеры могут быть созданы, запущены, остановлены, перенесены или удалены. Каждый контейнер изолирован и является безопасной платформой для приложения. Контейнеры — это компонента работы.

Так как же работает Docker?

Как работает образ?

Мы уже знаем, что образ — это read-only шаблон, из которого создается контейнер. Каждый образ состоит из набора уровней. Docker использует union file system для сочетания этих уровней в один образ. Union file system позволяет файлам и директориями из разных файловых систем (разным ветвям) прозрачно накладываться, создавая когерентную файловую систему.

Одна из причин, по которой docker легковесен — это использование таких уровней. Когда вы изменяете образ, например, обновляете приложение, создается новый уровень. Так, без замены всего образа или его пересборки, как вам возможно придётся сделать с виртуальной машиной, только уровень добавляется или обновляется. И вам не нужно раздавать весь новый образ, раздается только обновление, что позволяет распространять образы проще и быстрее.

В основе каждого образа находится базовый образ. Например, ubuntu, базовый образ Ubuntu, или fedora, базовый образ дистрибутива Fedora. Так же вы можете использовать образы как базу для создания новых образов. Например, если у вас есть образ apache, вы можете использовать его как базовый образ для ваших веб-приложений.

Примечание! Docker обычно берет образы из реестра Docker Hub.

Docker образы могут создаться из этих базовых образов, шаги описания для создания этих образов мы называем инструкциями. Каждая инструкция создает новый образ или уровень. Инструкциями будут следующие действия:

Как работает docker реестр?

Реестр — это хранилище docker образов. После создания образа вы можете опубликовать его на публичном реестре Docker Hub или на вашем личном реестре.

С помощью docker клиента вы можете искать уже опубликованные образы и скачивать их на вашу машину с docker для создания контейнеров.

Docker Hub предоставляет публичные и приватные хранилища образов. Поиск и скачивание образов из публичных хранилищ доступно для всех. Содержимое приватных хранилищ не попадает в результат поиска. И только вы и ваши пользователи могут получать эти образы и создавать из них контейнеры.

Как работает контейнер?

Контейнер состоит из операционной системы, пользовательских файлов и метаданных. Как мы знаем, каждый контейнер создается из образа. Этот образ говорит docker-у, что находится в контейнере, какой процесс запустить, когда запускается контейнер и другие конфигурационные данные. Docker образ доступен только для чтения. Когда docker запускает контейнер, он создает уровень для чтения/записи сверху образа (используя union file system, как было указано раньше), в котором может быть запущено приложение.

Что происходит, когда запускается контейнер?

Что же происходит под капотом, когда мы запускаем эту команду?

Используемые технологии

Докер написан на Go и использует некоторые возможности ядра Linux, чтобы реализовать приведенный выше функционал.

Пространство имен(namespaces)

Docker использует технологию namespaces для организации изолированных рабочих пространств, которые мы называем контейнерами. Когда мы запускаем контейнер, docker создает набор пространств имен для данного контейнера.

Это создает изолированный уровень, каждый аспект контейнера запущен в своем простанстве имен, и не имеет доступ к внешней системе.

Control groups (контрольные группы)

Docker также использует технологию cgroups или контрольные группы. Ключ к работе приложения в изоляции, предоставление приложению только тех ресурсов, которые вы хотите предоставить. Это гарантирует, что контейнеры будут хорошими соседями. Контрольные группы позволяют разделять доступные ресурсы железа и если необходимо, устанавливать пределы и ограничения. Например, ограничить возможное количество памяти контейнеру.

Union File System

Union File Sysem или UnionFS — это файловая система, которая работает создавая уровни, делая ее очень легковесной и быстрой. Docker использует UnionFS для создания блоков, из которых строится контейнер. Docker может использовать несколько вариантов UnionFS включая: AUFS, btrfs, vfs и DeviceMapper.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *