Что такое дыхание микроорганизмов
Дыхание микроорганизмов
Дыхание микроорганизмов представляет собой биологическое окисление различных органических соединений и некоторых минеральных веществ. В итоге окислительно-восстановительных процессов и брожения образуется тепловая энергия, часть которой используется микробной клеткой, а остальное количество выделяется в окружающую среду. В настоящее время окисление определяют как процесс отнятия водорода (дегидрирование), а восстановление — его присоединения. Эти термины применяют к реакциям, связанным с переносом протонов и электронов или только электронов. При окислении вещества происходит потеря электронов, а при восстановлении — их присоединение. Считают, что перенос водорода и перенос электронов — эквивалентные процессы.
Энергия, освобождаемая в процессе окислительно-восстановительных реакций, накапливается в макроэргических соединениях АДФ и АТФ (аденозиндифосфат и аденозинтрифосфат). Эти соединенияимеют макроэргические связи, обладающие большим запасом биологически доступной энергии. Они локализованы в сложно устроенных структурах микробных клеток — мезосомах, или митохондриях.
По типу дыхания микроорганизмы делят на аэробов, анаэробов и факультативных анаэробов.
Аэробное дыхание микроорганизмов — это процесс, при котором последним акцептором водорода (протонов и электронов) является молекулярный кислород. В результате окисления главным образом сложных органических соединений образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.
Полное окисление. Основной источник энергии у микроорганизмов — углеводы. В результате расщепления глюкозы в аэробных условиях процесс окисления идет до образования диоксида углерода и воды с выделением большого количества свободной энергии:
Неполное окисление. Не все аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара могут быть органические кислоты: лимонная, яблочная, щавелевая, янтарная и другие, которые образуются плесневыми грибами. Так же осуществляется аэробное дыхание уксуснокислыми бактериями, в которых при окислении этилового спирта образуется не диоксид углерода и вода, а уксусная кислота и вода:
этиловый спирт уксус. к-та
Окисление этилового спирта уксуснокислыми бактериями может идти и дальше — до появления диоксида углерода и воды, при этом освобождается большое количество энергии:
Анаэробное дыхание осуществляется без участия молекулярного кислорода. Различают собственно анаэробное дыхание (нитратное, сульфатное) и брожение. При анаэробном дыхании акцептором водорода являются окисленные неорганические соединения, которые легко отдают кислород и превращаются в более восстановленные формы. Нитратное дыхание — восстановление нитратов до молекулярного азота. Сульфатное дыхание — восстановление сульфатов до сероводорода.
Брожение — расщепление органических углеродсодержащих соединений в анаэробных условиях. Оно характеризуется тем, что последнимакцептором водорода служит молекула органического вещества с ненасыщенными связями. Вещество при этом разлагаетсятолько до промежуточных продуктов, представляющих собой сложныеорганические соединения (спирты, органические кислоты). Заключенная в них энергия не используется микробами, а образовавшаяся в небольших количествах энергия выделяется в окружающую среду.
Типичными примерами анаэробного дыхания являются:
— спиртовое брожение (дыхание дрожжей в анаэробных условиях):
— молочнокислое брожение (дыхание молочнокислых бактерий):
— маслянокислое брожение (дыхание маслянокислых бактерий):
Как видно из приведенных уравнений, при анаэробном дыхании освобождается значительно меньше энергии, чем при аэробном. Поэтому при анаэробном дыхании для того, чтобы обеспечить потребность в необходимом количестве энергии, микроорганизмам необходимо потреблять больше сахаров, чем при аэробном.
Большая часть энергии, образующейся при дыхании, освобождается в окружающую среду. Это вызывает нагревание продуктов, в которых развиваются микроорганизмы. Именно так нагревается вино, в котором происходит спиртовое брожение; нагревается влажное зерно, торф, сено.
ДЫХАНИЕ МИКРООРГАНИЗМОВ
Поступающие в микробную клетку питательные вещества превращаются затем в те или иные составные части цитоплазмы, ядра, оболочки клетки и т. д. Для этих сложных синтетических процессов необходима затрата определенного количества энергии, которую микробная клетка должна получать для поддержания своей жизнедеятельности так же непрерывно, как и питательные вещества.
Энергия необходима не только для синтетических процессов, но и для других многочисленных проявлений жизнедеятельности микроорганизмов — роста, размножения, движения, образования спор и капсул и т. д.
Всю необходимую энергию микробные клетки получают за счет реакций, осуществляемых путем окисления различных химических соединений.
Процессы, обеспечивающие энергетические потребности микроорганизмов, объединяются под названием дыхательных. Особенно доступны окислению в процессе дыхания углеводы, освобождающие большое количество энергии. Используются также жиры, белки, кислоты и другие органические вещества.
Луи Пастер впервые установил совершенно необычайную способность некоторых микроорганизмов развиваться без использования кислорода воздуха в отличие от высших организмов — растений и животных, которые могут жить лишь в атмосфере, содержащей кислород.
По этому признаку микроорганизмы разделены на две группы: аэробы и анаэробы.
В процессе аэробного дыхания растений и животных органическое вещество окисляется до конечных продуктов — углекислого газа и воды. При этом освобождается весь запас энергии данного вещества:
С2Н5ОН + 302 = 2С03 + ЗН20 + 1369 кДж
Этиловый углекислый
спирт газ
У микроорганизмов такое дыхание встречается редко. Чаще органические вещества разрушаются не до конца. Образующиеся при этом все еще довольно сложные продукты могут использоваться человеком в хозяйственных целях (уксусная кислота, сорбоза, диоксиацетон и др.). Однако при неглубоком окислении выделяется меньше энергии. Например, энергетический баланс при дыхании уксуснокислых бактерий может быть выражен уравнением
Примером типичных аэробов являются также палочка чудесной крови, сенная палочка, бактерии туберкулеза и др. Не только уксуснокислые, но и некоторые другие аэробные микробы могут быть использованы для получения полезных для человека веществ. Для этого необходимо прекращать тем или иным путем вызываемые ими процессы окисления на каком–либо этапе, чтобы не произошло полного окисления и остались продукты с запасом скрытой энергии.
Анаэробы — это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробное дыхание происходит за счет отнятия у субстрата водорода.
Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода, в связи с чем называются облигатными, или строгими, анаэробами. К их числу принадлежат, например, возбудители маслянокислого и пропионовокислого брожений, столбнячная палочка. Другие микробы могут развиваться и в аэробных, и в анаэробных условиях, поэтому их называют факультативными, или условными, анаэробами. Таковыми являются молочнокислые бактерии, кишечная и тифозная палочки, протей, дрожжи и другие микроорганизмы.
Факультативные анаэробы в зависимости от условий среды могут изменять анаэробный тип дыхания на аэробный. Так, дрожжи при ограниченном притоке кислорода расщепляют сахар на спирт и углекислоту; при обильной аэрации у них возникает аэробное дыхание с полным окислением Сахаров до углекислоты и воды.
Типичные анаэробные дыхательные процессы принято называть брожениями. Примером получения энергии анаэробным путем может служить спиртовое брожение, осуществляемое многими дрожжами и некоторыми другими микроорганизмами по схеме
Из уравнения видно, что часть субстрата, превратившаяся в углекислый газ, представляет глубоко окисленное по сравнению с гексозой соединение (отношение числа атомов углерода к кислороду в составе углекислого газа 1:2 против исходного 1:1). Другая часть, превратившаяся в этиловый спирт, восстановилась (отношение числа углеродных атомов к кислороду 2 : 1). Окислительно–восстановительный процесс затронул исходный продукт сбраживания без участия кислорода. Такой тип превращений субстрата характерен для всех типичных брожений — молочнокислого, маслянокислого и др.
Количество энергии, выделяющееся при аэробном дыхании, значительно больше, чем при анаэробном. Так, при аэробном окислении глюкозы до углекислого газа и воды освобождается примерно в 25 раз больше энергии, чем при спиртовом брожении. Это объясняется тем, что конечные продукты, которые получаются в результате анаэробного окисления, всегда представляют собой сложные органические соединения, имеющие большой запас энергий, — спирты, кислоты и др. В связи с этим многие брожения применяются для получения ценных пищевых и технических продуктов.
Продукты жизнедеятельности одних микроорганизмов часто могут быть энергетическим материалом для других. Так, дрожжи образуют из сахара этиловый спирт, который уксуснокисные бактерии окисляют в уксусную кислоту.
Из всего количества энергии, выделившегося в ходе дыхательных процессов, на нужды самих микроорганизмов обычно используется примерно лишь четвертая часть. Значительная доля энергии (75–90%) выделяется в виде тепла в окружающее пространство. Выделением тепла при дыхании микроорганизмов обусловлены процессы самосогревания влажного, сена, навоза, торфа, зерновых масс, муки.
Существует довольно много светящихся бактерий, у которых окислительные процессы в клетке сопровождаются отдачей световой энергии. Свечение морской воды, прелого дерева и пищевых продуктов (мяса, рыбы) происходит из–за присутствия светящихся бактерий (фотобактерий). Их свечение обусловлено интенсивным окислением особых фотогенных веществ.
По современным представлениям, значение дыхания в обмене веществ не ограничивается ролью только энергетического процесса. Установлено, что часть более или менее простых веществ, образующихся в ходе дыхания, вновь вовлекается в процесс синтеза необходимых для организма сложных веществ, т. е. используется в пластических целях.
Выделяемые в окружающую среду продукты жизнедеятельности, накапливаясь, оказывают губительное влияние на сами микроорганизмы, их выделяющие. При увеличении концентрации продуктов обмена вереде процессы жизнедеятельности замедляются и практически могут прекратиться совсем. Так, жизнедеятельность дрожжей значительно замедляется при накоплении в сбраживаемом субстрате 10–14% спирта, а уксуснокислые бактерии остаются жизнедеятельными при накоплении не более 3–4% уксусной кислоты. Это явление можно объяснить тем, что накапливающиеся продукты обмена тормозят те самые биохимические реакции, в процессе которых они появляются.
Некоторые продукты обмена, оказывающие влияние на продуцирующие их организмы, применяются в хозяйственной практике. Так, молочная и уксусная кислоты, углекислый газ, этиловый спирт и другие вещества используются для защиты пищевых продуктов от микробиологической порчи.
ГК «Униконс»
Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.
«Антисептики Септоцил»
Септоцил. Бытовая химия, антисептики.
«Петритест»
Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.
«АльтерСтарт»
Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.
ВНИМАНИЕ: Уважаемые клиенты и дистрибьюторы!
Дыхание бактерий
Поступающие в микробную клетку питательные вещества трансформируются затем в те или иные составные вещества цитоплазмы, ядра, оболочки клетки и т. д. Для этих сложных синтетических процессов необходимо определенное количество энергии, которую микробная клетка должна получать для поддержания своей жизнедеятельности так же непрерывно, как и питательные вещества.
Энергия необходима не только для синтетических процессов, но и для других многочисленных проявлений жизнедеятельности бактерий — размножения микробов, движения, образования спор и капсул и т. д.
Всю необходимую энергию микробные клетки получают за счет экзотермических реакций, осуществляемых путем окислительно-восстановительных преобразований различных химических соединений, обладающих большими запасами потенциальной энергии.
Процессы, обеспечивающие энергетические потребности микроорганизмов, объединяются под названием дыхательных. Особенно доступны окислению в процессе дыхания углеводы, освобождающие большое количество энергии. Используются также и другие органические вещества — жиры, белки, кислоты и пр.
Л. Пастер впервые установил необычайную способность некоторых микроорганизмов развиваться без использования кислорода воздуха, в то время как все высшие организмы — растения и животные — могут жить в атмосфере, содержащей кислород.
По этому признаку Л. Пастер разделил микроорганизмы по типам дыхания на две группы — аэробы и анаэробы.
В процессе аэробного дыхания растений и животных органическое вещество окисляется до конечных продуктов — CO2 и H2О. При этом освобождается весь запас энергии данного вещества:
У микроорганизмов такое дыхание встречается редко. Чаще органические вещества разрушаются не до конца. Образующиеся при этом все еще довольно сложные продукты могут использоваться человеком в хозяйственных целях (уксусная кислота, сорбоза, диоксиацетон и др.).
Однако при неглубоком окислении выделяется меньше энергии. Например, энергетический баланс при использовании уксусно-кислыми бактериями этилового спирта будет выражен уравнением:
Примерами типичных аэробов являются также чудесная палочка (продигиозум), сенная палочка, бактерии туберкулеза и др. Не только уксусно-кислые, но и некоторые другие аэробные микробы могут быть использованы для получения полезных веществ. Для этого необходимо прекратить процессы окисления, вызываемые этими микроорганизмами, на каком-либо этапе с тем, чтобы не произошло полного окисления и остались продукты с запасом скрытой энергии.
Анаэробы — это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробный процесс дыхания у микроорганизмов происходит за счет отнятия у субстрата водорода. Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода и носят название облигатных, или строгих, анаэробов. К их числу принадлежат, например, возбудители масляно-кислого брожения, столбнячная палочка, возбудители ботулизма: Другие микробы могут развиваться как в аэробных, так и в анаэробных условиях. Их называют факультативными, или условными, анаэробами; это молочно-кислые бактерии, кишечная палочка, протей, дрожжи и др.
В зависимости от условий существования факультативные анаэробы могут изменять анаэробный тип дыхания на аэробный. Так, дрожжи при ограниченном притоке кислорода разлагают сахар на спирт и углекислоту; при обильной аэрации у них преобладает аэробное дыхание с полным окислением Сахаров до углекислого газа и воды.
Разрушение энергетического материала в анаэробных процессах всегда идет не до конечных продуктов, образуя целый ряд нужных человеку веществ — этиловый и бутиловый спирты, масляную и молочную кислоты и др.
Типичные анаэробные дыхательные процессы принято называть брожениями. Примером получения энергии анаэробным путем может служить спиртовое брожение, осуществляемое многими дрожжами и некоторыми другими микроорганизмами по схеме:
Из приведенного уравнения видно, что часть субстрата, превратившаяся в углекислый газ, представляет собой глубоко окисленное по сравнению с гексозой соединение (отношение числа атомов углерода к кислороду в составе углекислого газа равно 1:2 против исходного 1:1). Зато другая часть, превратившаяся в этиловый спирт, восстановилась (отношение числа углеродных атомов к кислороду 2:1),
Окислительно-восстановительный процесс затронул исходный продукт сбраживания без участия кислорода.
Такой тип превращений субстрата характерен и для всех типичных брожений — молочно-кислого, масляно-кислого и др.
К числу анаэробов принадлежат представители различных групп микроорганизмов; среди них встречаются и болезнетворные, например возбудители газовой гангрены, палочка ботулизма и пр. Болезнетворными анаэробами богата загрязненная почва, поэтому попадание земли в раны может быть очень опасным.
В энергетическом отношении аэробное дыхание во много раз выгоднее анаэробного. Так, при аэробном процессе окисления глюкозы до углекислого газа и воды освобождается примерно в 25 раз больше энергии, чем при анаэробном процессе (например, спиртовом брожении). Это объясняется тем, что конечные продукты, получающиеся в результате анаэробного окисления, всегда представляют собой сложные органические соединения, имеющие большой запас энергии,— спирты, кислоты и др.
Продукты жизнедеятельности одних микроорганизмов часто могут быть энергетическим материалом для других. Так, дрожжи образуют из сахара этиловый спирт, который уксусно-кислые бактерии окисляют в уксусную кислоту.
В большинстве случаев из всего количества энергии, выделившейся из субстрата в ходе дыхательных процессов, на нужды самих микроорганизмов используется примерно лишь четвертая часть. Значительная доля энергии (75-90%) в виде тепла выделяется в окружающее пространство.
Выделение тепла при дыхании микроорганизмов можно наблюдать при выращивании культур в сосудах, защищенных от потери тепла, где температура питательной среды постепенно повышается. Выделением тепла при дыхании микроорганизмов обусловливаются процессы самосогревания влажного сена, навоза, торфа, зерновых масс, муки.
Существует довольно много светящихся бактерий, у которых окислительные процессы в клетке сопровождаются отдачей световой энергии. Свечение морской воды, прелого дерева, пищевых продуктов (мяса, рыбы) обусловливается присутствием светящихся бактерий, или фотобактерий. Их свечение объясняется интенсивным окислением кислородом особых фотогенных веществ. Установлено, что светиться могут и убитые бактерии.
По современным представлениям, значение дыхания в обмене веществ не ограничивается ролью только энергетического процесса. Установлено, что часть более или менее простых веществ, образующихся в ходе дыхания, вновь вовлекается в процесс синтеза необходимых для организма сложных соединений, т. е. используется в пластических целях.
Заканчивая рассмотрение обмена веществ микроорганизмов, следует обратить внимание на то, что неизбежно выделяемые ими в окружающую среду продукты жизнедеятельности, накапливаясь, оказывают губительное влияние на сами микроорганизмы, их выделяющие. При возрастании концентрации продуктов обмена в среде процессы жизнедеятельности замедляются и практически могут прекратиться совсем. Так, жизнедеятельность дрожжей значительно замедляется при накоплении в сбраживаемом субстрате 10—14 % спирта; не более 3-4 % уксусной кислоты могут переносить уксусно-кислые бактерии. Объяснить это явление можно тем, что продукты обмена затормаживают течение тех самых биохимических реакций, которые необходимы для поддержания нормальной жизнедеятельности клеток и итогом которых является образование этих веществ. Иллюстрацией может служить затруднение дыхания у всех, в том числе и у человека, в результате накопления углекислого газа, выделяющегося при дыхании. Некоторые продукты обмена, обладающие широким спектром действия, т. е. оказывающие влияние не только на продуцирующие их организмы, но и на другие, находят применение в хозяйственной практике. Так, молочная и уксусная кислоты, углекислый таз, этиловый спирт и другие применяют для защиты пищевых продуктов от микробиологической порчи.
ГК «Униконс»
Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.
«Антисептики Септоцил»
Септоцил. Бытовая химия, антисептики.
«Петритест»
Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.
«АльтерСтарт»
Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.
ВНИМАНИЕ: Уважаемые клиенты и дистрибьюторы!
1.1.5. Питание, дыхание микроорганизмов
Физиология микроорганизмов изучает особенности развития, питания, энергетического обмена и других процессов жизнедеятельности микробов в различных условиях среды.
Питание микробов осуществляется путем диффузии через оболочку и мембрану растворенных в воде питательных веществ. Нерастворимые сложные органические соединения предварительно расщепляются вне клетки с помощью ферментов, выделяемых микробами в субстрат.
По способу питания микроорганизмы разделяют на аутотрофные и гетеротрофные.
Аутотрофы способны синтезировать из неорганических веществ (в основном углекислого газа, неорганического азота и волы) органические соединения. В качестве источника энергии для синтеза эти микробы используют световую энергию (фотосинтез) или энергию окислительных реакций (хемосинтез).
ОБМЕН ВЕЩЕСТВ И СОСТАВ МИКРООРГАНИЗМОВ
Вода. Микробная клетка на 75-85% состоит из воды. Большая часть воды находится в цитоплазме клетки в свободном состоянии. В воде протекают все биохимические процессы обмена веществ, вода является также растворителем этих веществ, так как питательные вещества поступают в клетку только в виде раствора, а продукты обмена удаляются из клетки тоже с водой. Часть воды в клетке находится в связанном состоянии и входит в состав некоторых клеточных структур. В спорах бактерий и грибов количество свободной воды снижено до 50% и менее. При значительной потере связанной воды микробная клетка погибает.
Органические вещества микробной клетки представлены белками (6-14%), жирами (1-4%), углеводами, нуклеиновыми кислотами.
Содержание жиров у различных микроорганизмов различно, у некоторых дрожжей и плесеней оно выше в 6-10 раз, чем у бактерий. Жиры (липиды) являются энергетическим материалом клетки. Жиры в виде липопротеидов входят в состав цитоплазматической мембраны, которая выполняет важную функцию в обмене клетки с окружающей средой. Жиры могут находиться в цитоплазме в виде гранул или капелек.
Минеральные вещества (фосфор, натрий, магний, хлор, сера и др.) входят в состав белков и ферментов микробной клетки, они необходимы для обмена веществ и поддержания нормального внутриклеточного осмотического давления.
Витамины необходимы для нормальной жизнедеятельности микроорганизмов. Они участвуют в процессах обмена веществ, так как входят в состав многих ферментов. Витамины, как правило, должны поступать с нищей, однако некоторые микробы обладают способностью синтезировать витамины, например В2 или В12.
Процессы биосинтеза веществ микробной клетки протекают с затратой энергии. Большинство микробов используют энергию химических реакций с участием кислорода воздуха. Этот процесс окисления питательных веществ с выделением энергии называется дыханием. Энергия высвобождается при окислении неорганических (аутотрофы) или органических (гетеротрофы) веществ.
Анаэробные микроорганизмы (анаэробы) не используют для дыхания кислород, они живут и размножаются при отсутствии кислорода, получая энергию в результате процессов брожения (рис. 1.13). Анаэробами являются бактерии из рода клостридий (ботулиновая палочка и палочка нерфрингенс), маслянокислые бактерии и др.
Рис. 1.13. Анаэробные бактерии
В анаэробных условиях проходят спиртовое, молочнокислое и маслянокислое брожение, при этом процесс превращения глюкозы в спирт, молочную или масляную кислоту происходят с выделением энергии. Около 50% выделенной энергии рассеивается в виде тепла, а остальная часть аккумулируется в АТФ (аденозинтрифосфорная кислота).
Некоторые микроорганизмы способны жить как в присутствии кислорода, так и без него. В зависимости от условий среды они могут переходить с анаэробных процессов получения энергии на аэробные, и наоборот. Такие микроорганизмы называются факультативными анаэробами.