Что такое мощность эквивалентной дозы гамма излучения
Допустимый радиационный фон для человека
Радиационное излучение постоянно воздействует на людей – на улице в городе, на работе, в квартире и любом другом помещении. Естественный радиационный фон, который создается солнцем и космическими лучами, безопасен для человеческого здоровья. Но есть ли нормальный уровень радиации для человека в быту, с которым он может жить, не подвергая свой организм фатальным изменениям?
Виды радиационного фона
Ионизирующее излучение (ИИ), взаимодействуя с веществом, становится причиной ионизации атомов и молекул (атом возбуждается и открывается от отдельных электронов из атомных оболочек). Основные виды радиации:
Единицы измерения радиации
Допустимый радиационный фон для человека и нормы радиации измеряются с помощью доз излучения. Это величины, которые применяются, чтобы оценить уровень воздействия ионизирующего излучения на различные вещества, организмы, ткани. Единица измерения зависит от типа дозы:
Существует ли вообще безопасная доза?
Норма радиации – размытое понятие. В 1950 г. скандинавский ученый Рольф Зиверт установил, что у облучения нет порогового уровня – определенного значения, при котором у человека гарантированно не будет наблюдаться заметных или незаметных повреждений.
Любая существующая норма радиации способна теоретически вызывать изменения в организме людей соматические и генетические изменения. Многие из которых не проявляются сразу, а остаются скрытыми в течение длительного временного промежутка. Поэтому сложно говорить о нормах радиации – существуют только допустимые ее пределы.
Допустимые дозы радиации
Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).
При этом также отмечается, что не более 0,2 мкЗв в час (20 микрорентген в час) – это максимально безопасный уровень облучения человеческого организма при условии, что радиационный фон входит в диапазон нормальных показателей, поэтому норму радиации даже в этом случае можно назвать условной. При воздействии в течение нескольких часов считается безопасным излучение на уровне не более 10 микрозиверт в час (1 миллирентген). Кратковременно допускается облучение в несколько миллизивертов в час (например, во время рентгена или флюорографии).
Поглощенная доза
Под понятием «поглощенная доза» определяется величина энергии радиации, которая была передана веществу. Выражена в качестве отношения энергии излучения, которая поглощена в данном объеме, к массе вещества в этом объеме.
Является основной дозиметрической величиной. Согласно международной системе единиц, ее измерение происходит в джоулях на кг (Дж/кг). Называется – «грей» (Гр, Gy). Не способна отразить биологический эффект облучения.
Оценка действия радиации на неживые объекты
Для определения нормы радиации при ее воздействии на неживые объекты используются показатели поглощенной дозы (количество поглощенной энергии веществом). При этом более информативной величиной считается экспозиционная доза, с помощью которой возможно определение степени воздействия на вещество разных типов радиации. Сложно говорить о нормах радиации на неживые объекты.
Оценка действия радиации на живые организмы
Если биологические ткани облучать различными типами радиации, обладающими одной и той же энергией, то последствия для организма будут отличаться. Иными словами, если при поглощении одной нормы радиации последствия будут серьезно разниться при альфа-излучении и гамма-излучении. Поэтому, чтобы оценить воздействие ионизирующего излучения на живые организмы, не хватает понятий экспозиционной и поглощенной дозы, также используется эквивалентная.
Это доза радиации, которая была поглощена живым организмом, помноженная на коэффициент k, который учитывает уровень опасности разных типов радиации. Измерение происходит с использованием Зиверт (Зв).
Нормы радиации согласно СанПин
В соответствии с СанПиНом 2.6.1.2523-09, эффективная доза облучения естественными источниками излучения любых работников, в т. ч. медперсонала, не должна составлять более 5 мЗв в год в производственных условиях (любые типы профессий и производств).
Если говорить о конкретных нормах радиации, то усредненные показатели радиационных факторов в течение 12 месяцев, которые соответствуют при монофактором воздействии дозе в 5 мЗв при длительности рабочего процесса 2000 часов/год, примерной скорости дыхания 1,2 кубометра/час, условии радиоактивного равновесия радионуклидов ториевого и уранового рядов в пыли, составляют:
Данные нормы радиации весьма условны, потому что многое будет зависеть от конкретных производственных условий, специфики сферы деятельности и других факторов.
Смертельная доза
В любых нормах радиации обычно всегда прописывается доза, которая быстро приводит к летальному исходу. Опасность ее получения чаще всего наблюдается при возникновении техногенных аварий, несоблюдении условий хранения радиоактивных отходов (вне зависимости от того, какой тип облучения воздействует на человека).
Мощность дозы рентгеновского излучения
Содержание
В чём измеряется мощность дозы рентгеновского излучения и как происходит радионуклидное накопление в человеческом организме?
Какой объем накопленного ионизирующего облучения критичен для здоровья?
Системные и внесистемные единицы измерения
В процессе научного открытия и последующего изучения источников ионизирующего излучения и радиоактивности возникла необходимость во введении специальных единиц измерения. Первыми такими единицами стали Кюри и Рентген. Изначально в мировой практике исследования радиоактивного фона полностью отсутствовала систематизация, поэтому сегодня первичные единицы измерения принято называть внесистемными.
В настоящее время подавляющим большинством государств принята единая интернациональная система измерения (CI). В Российской Федерации переход на CI был начат в январе 1982 года. Предполагалось, что он будет завершен к январю 1990 года, но политические и экономические события в стране существенно затянули данный процесс. Тем не менее, вся современная дозиметрическая аппаратура выпускается с учётом градуирования в новых единицах измерения.
За несколько десятилетий активного изучения и практического применения рентгеновского излучения было введено большое количество различных единиц измерения дозы: Бэр, Грэй, Беккерель, Рад, Кюри и многие другие. Они используются в различных системах измерения и сферах радиологии. В контексте рентгенодиагностики наиболее часто употребляемые – Зиверт и Рентген.
Области применения Рентгена и Зиверта
Рентген сегодня считается устаревшей единицей измерения. Сфера её применения за последние годы существенно сузилась. Чаще всего она теперь используется для отображения общего излучения, тогда как размер полученной человеком дозы обозначается Зивертами.
Еще одно современное применение единицы измерения Рентген – определение характеристик рентгеновского аппарата, в том числе уровня излучаемой им проникающей радиации.
Для объективной и максимально точной оценки воздействия радиоактивного фона на человеческий организм используется понятие – эквивалентная поглощенная доза. ЭПД дает возможность определить количественную величину поглощенной организмом энергии. Анализ проводится с учетом биологической реакции отдельных тканей тела на ионизирующее излучение. При определении показателей применяется единица измерения – Зиверт. Она равна примерно 100 Рентген.
Тысячные и миллионные доли Зиверта/Рентгена
Мощность получаемой дозы облучения при прохождении рентгенодиагностики в десятки раз ниже показателя в 1 зиверт. Многократно ниже данной единицы измерения и естественный фон облучения. Поэтому для проведения более корректных замеров были введены такие понятия, как миллизиверт (мЗв) и микрозиверт (мкЗв). Один зиверт равен тысяче миллизиверт, или одному миллиону микрозиверт. Аналогичные значения применяются и по отношению к Рентгену.
Мощность дозы принято отображать в виде количественной части полученного облучения за определённый временной промежуток. Наиболее распространенные единицы времени: секунды, минуты и часы. Следовательно, часто используемые показатели: зв/ч, мзв/, р/ч, мр/ч и так далее.
Допустимый объём накопленного в организме облучения
Доза облучения при воздействии на человеческий организм имеет накопительное свойство. Учеными определен критический порог накопленных на протяжении жизни Зивертов в организме, превышение которого чревато негативными последствиями. Безопасный объем накопленного облучения находится в диапазоне от 100 до 700 миллизивертов.
Для коренных жителей высокогорных районов данные показатели могут быть немного выше.
Основные источники накопления в организме радионуклидных соединений
Ионизирующее излучение происходит вследствие инерционного высвобождения магнитных волн при активном взаимодействии атомов. Источники ионизирующего излучения делятся на природные и искусственные.
Природные ионизирующие излучения
К числу природных источников излучения в первую очередь относится естественный радиационный фон. В различных районах планеты фиксируется разный уровень радиации. На его размер оказывают прямое влияние следующие факторы:
Оптимальным для жизни считается радиационный фон 0,2 микрозиверта в час (или 20 микрорентген в час). Верхний порог допустимого уровня: 0,5 микрозивертов в час (50 микрорентген в час).
В зоне радиационного фона до 10 мкЗв/ч (1 мР/ч) возможно безопасное нахождение на протяжении 2-3 часов. Более продолжительное пребывание способно повлечь критические последствия.
Источники накопления дозы естественного излучения в организме
Среднестатистическая накапливаемая в человеческом организме доза естественного излучения составляет примерно 2–3 мЗв в год. Она складывается из следующих показателей:
Одним из источников природного ионизирующего излучения является сам человеческий организм, производящий собственные отложения радионуклидных соединений. Среднестатистический уровень одного только скелета колеблется от 0,1 до 0,5 мЗв.
Искусственные ионизирующие излучения
К источникам искусственного ионизирующего облучения в первую очередь относятся медицинские аппараты, применяемые во время проведения рентгеновской диагностики или терапии. В разных видах рентгеновского обследования различная величина эквивалентной поглощенной дозы. Также на мощность дозы облучения влияет срок выпуска и эксплуатационная нагрузка используемого рентген аппарата.
Рентгеновская аппаратура последнего поколения подвергает человеческий организм облучению в несколько десятков раз ниже, чем предшествовавшие модели. Современные цифровые аппараты практически безопасны.
Размер доз облучения при рентгенодиагностике
Мощность дозы рентгеновского излучения в современных аппаратах по сравнению с их предыдущими модификациями:
При рентгеноскопической диагностике происходит визуальное обследование органов с оперативным выводом необходимой информации на монитор компьютера. В отличие от фотографического метода, данный тип диагностики подвергает пациента меньшей дозе облучения за равную единицу времени. Но в некоторых случаях обследование может проводиться более длительное время.
При диагностике продолжительностью до 15-ти минут средняя мощность полученной дозы колеблется от 2 до 3,5 мЗв.
Во время проведения диагностики желудочно-кишечного тракта человек получает дозу облучения до 6-ти миллизивертов. При компьютерной томографии – от 2-х до 6-ти миллизивертов (мощность получаемой дозы напрямую зависит от диагностируемых органов).
При проведении сравнительного анализа получаемой человеком дозы ионизирующего облучения от аппаратов рентгенодиагностики и повседневном пребывании в привычной окружающей среде учёными были получены следующие данные:
Согласно законодательству Российской Федерации по радиационной безопасности допустимой нормой рентгеновского облучения (средняя годовая эффективная доза) является обобщенная доза в 70 мЗв, полученная в течение 70-ти лет жизни.
Что такое мощность эквивалентной дозы гамма излучения
ИЗМЕРЕНИЕ МОЩНОСТИ ДОЗЫ
ГАММА-ИЗЛУЧЕНИЯ НА МЕСТНОСТИ
Опыт использования в 1997-99 гг. “Временной учебной методики измерения мощности эквивалентной дозы гамма-излучения на местности ВУМ-1-96” [1] подтвердил ее полезность при организации и проведении практических занятий с учащимися средней школы, интересующимися радиоэкологическими проблемами. Помимо закрепления азов метрологической культуры, методика гармонизировала процесс выполнения измерений, обработки результатов и использования полученной радиоэкологической информации.
Представленная ниже методика измерения МИ-2000 – это частично переработанная и дополненная с учетом норм радиационной безопасности (НРБ-99) [2] ВУМ-1-96, ориентированная на бытовой дозиметр-радиометр АНРИ-01 [3]. Последнее – вынужденный шаг, вызванный тем, что дозиметры ИРД-02Б1, на которые, в основном, была рассчитана ВУМ-1-96, серийно уже не выпускаются, а имевшиеся экземпляры, использовавшиеся в школах г. Гатчины и района, пришли в полную негодность.
Примечание. Дозиметр-радиометр АНРИ-01 “Сосна” выпускается серийно. Приобрести его можно через предприятие “ИЗОТОП” (191002, СПб, Загородный пр., д. 13)
2. Основные термины и определения
Доверительный интервал – доверительные границы случайной погрешности результата измерения – это тот интервал, в который с заданной (принятой исследователем) вероятностью должно попасть среднее арифметическое значение при бесконечном (теоретическом) увеличении количества единичных наблюдений.
Доза поглощенная (D) – величина энергии ионизирующего излучения, переданная веществу:
где de – средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, dm – масса вещества в этом объеме. Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленному на массу этого объема. В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название – грей (Гр).
Доза эквивалентная – поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, WR :
Естественный радиационный фон, сокращенно естественный фон – мощность дозы, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в поверхностных слоях Земли, приземной атмосфере, в воде.
Ионизирующее излучение – излучение, взаимодействие которого с веществом приводит к образованию в этом веществе ионов разных знаков.
Кроки (в топографии) – наскоро набросанный по глазомерной съемке план местности, выражающий ее общий характер и выделяющий наиболее важные местные предметы (дороги, здания и т.п.).
Мощность дозы – доза излучения за единицу времени (секунду, минуту, час). Единица измерения мощности эквивалентной дозы является Зв/с, а дольная единица – микрозиверт в час (мкЗв/ч).
Примечание. При использовании дозиметров, шкалы которых размечены в единицах, так называемой, экспозиционной дозы(или мощности дозы), т.е. в рентгенах (Р) или Р/ч, мР/ч, мкР/ч, для интерпретации их показаний в зивертах и соответствующих дольных единицах, следует помнить, что экспозиционной дозе (в воздухе) 1Р соответствует эквивалентная доза (в биологической ткани) 9,6 мЗв, и при показаниях такого дозиметра, например, 15 мкР/ч, с небольшой погрешностью
4 % можно считать, что для биологической ткани это соответствует 0,15 мкЗв/ч. В частности, при использовании АНРИ-01 его показания в мР/ч следует умножать на 10, чтобы получать значения мощности эквивалентной дозы в мкЗв/ч.
Нуклид – вид атомов с данным числом протонов и нейтронов в ядре, характеризующийся массовым числом А (атомной массой) и атомным номером Z.
Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины.
Радиоактивность – самопроизвольное превращение неустойчивого нуклида (радионуклида) в другой нуклид, сопровождающееся испусканием ионизирующего излучения.
Фотон, фотонное излучение – квант (частица) гамма- и рентгеновского излучений. Фотонное излучение – собирательное название для гамма- и рентгеновского излучений.
3. Методика измерения мощности эквивалентной дозы гамма-излучения на местности МИ-2000
Методика устанавливает порядок выполнения измерений, обработки и оформления результатов измерений в учебно-практических целях. Методика рассчитана на учащихся старших классов средней школы.
Для выполнения измерений используется дозиметр АНРИ-01 (далее дозиметр). Дозиметр предназначен для измерения мощности эквивалентной дозы гамма-излучения. Дозиметр позволяет оперативно обнаружить загрязненность радионуклидами или найти источник ионизирующего излучения.
Технические характеристики и описание дозиметра изложены в руководстве по его эксплуатации. В частности, дозиметр обеспечивает измерение мощности эквивалентной дозы от 0,1 до 99,99 мкЗв/ч при энергии фотонов гамма-излучения в диапазоне от 0,06 до 1,25 МэВ.
Дозиметр должен иметь свидетельство о государственной поверке, выданное органами Госстандарта.
Погрешность методики измерений определяется погрешностью дозиметра АНРИ-01. МИ-2000 обеспечивает выполнение измерений для 95% доверительного интервала с погрешностью, не превышающей 43%.
Изменение чувствительности дозиметра при постоянной мощности дозы в зависимости от энергии регистрируемого излучения в диапазоне от 0,06 до 1,25 МэВ не более чем ± 30% от значения, полученного от источника ионизирующего излучения – цезия-137 (энергия излучения 0,66 МэВ).
Измерение мощности эквивалентной дозы гамма-излучения на местности выполняют методом измерения скорости счета импульсов, возникающих в газоразрядных счетчиках (СБМ-20) под действием гамма-излучения.
При выполнении измерений мощности эквивалентной дозы на местности необходимо соблюдать требования «Норм радиационной безопасности НРБ-99» и «Основных санитарных правил ОСП-72/87» [4].
Требования к квалификации операторов
К самостоятельному выполнению измерений и обработке их результатов допускаются лица, имеющие образование в объеме физико-математической программы старших классов средней школы, прошедшие учебно-тренировочные занятия под руководством специалистов-профессионалов в области дозиметрии и радиометрии ионизирующих излучений.
Подготовка к выполнению измерений
Изучить до начала работы руководство по эксплуатации дозиметра АНРИ-01, принцип работы дозиметра и назначение органов управления дозиметром.
Произвести внешний осмотр дозиметра. Установить выключатель питания в положение «выключено», открыть крышку отсека питания и установить элемент “Корунд” (или аналогичный). Закрыть крышку отсека питания.
Включить дозиметр, установив выключатель питания в положение «ВКЛ», а переключатель режима работы в положение “МД”.
При правильном функционировании дозиметра на цифровом табло должна появиться индикация 0,000, сопровождаемая коротким звуковым сигналом.
Проверить исправность электронной пересчетной схемы и таймера дозиметра, для чего нажать и удерживать до окончания тестирования кнопку “КОНТР.” Кратковременно нажать кнопку “ПУСК”. На табло между цифрами должны появиться три точки и начаться отсчет чисел. Через (20±5) секунд отсчет чисел должен прекратиться, а на табло должно появиться число 1.024 или 0.512 в зависимости от модификации дозиметра, сопровождаемое коротким звуковым сигналом.
Проверить работоспособность преобразователя напряжения и счетчиков дозиметра, нажав кнопку “ПУСК”. Через (20±5) секунд, при естественном, неизмененном фоне гамма-излучения от 0.05 до 0.20 мкЗв/ч, на табло должно появиться число от 0.005 до 0.02, сопровождаемое коротким звуковым сигналом.
Примечание. Если при проведении проверок индицируются числа, отличные от указанных выше, или число, меньшее 0.005, то дозиметр неисправен, и его следует отправить в ремонт; если при первичном включении дозиметр издает постоянный звуковой сигнал, то необходимо установить новый элемент питания.
Разместить дозиметр на высоте 1 м от поверхности грунта в выбранной точке измерений экраном вниз, к земле.
Через 25 секунд снять показания на цифровом табло в микрозивертах в час, умножив для этого исходные показания на 10.
Пример: Показания на цифровом табло 0,014 означают, что мощность эквивалентной дозы составляет 0,14 мкЗв/ч.
Снять (записывая) пять показаний в данной точке измерения.
При поиске местонахождения источника ионизирующего излучения следует медленно перемещать дозиметр в направлении повышения показаний, делая 25-секундные паузы. При перемещениях дозиметр следует держать таким образом, чтобы экран был направлен в сторону предполагаемого источника.
Примечание. В тех случаях, когда радиационный фон значительно выше естественного, дозиметр можно использовать в режиме “ПОИСК”. Для этого переключатель режима работы ставят в положение “Т” и контроль уровня гамма-излучения ведут на слух, по частоте следования звуковых сигналов. При естественном, неизмененном фоне гамма-излучения дозиметр подает 1-6 или 3-12 звуковых сигналов в минуту, в зависимости от модификации.
Обработка и оформление результатов измерений
Показания дозиметра записывают в карточку регистрации (форма карточки приведена в Приложении).
Вычисляют полную погрешность измерений D по формуле:
Мощность дозы естественного фона составляет 0,15 мкЗв/ч и, в зависимости от местных условий, может меняться в два раза. Некоторые горные породы, например, гранит, радиоактивны и поэтому создают повышенный естественный фон. Вплотную к гранитной поверхности мощность дозы может возрасти на 0,15 мкЗв/ч.
Для населения, проживающего вблизи атомных электростанций и предприятий установлен предел годовой дозы 5 мЗв. Этой величине соответствует постоянная в течение года мощность дозы на открытой местности 0,6 мкЗв/ч. С учетом того, что часть времени человек находится внутри зданий, которые ослабляют излучение в два и более раз, мощность дозы на открытой местности может быть 1,2 мкЗв/ч.
Если мощность дозы превышает 1,2 мкЗв/ч, рекомендуется покинуть данное место или, если есть необходимость находиться на нем, то пребывание следует ограничить шестью месяцами в год; при мощности дозы 2,5 мкЗв/ч, – тремя месяцами в год, а при 7 мкЗв/ч, – одним месяцем.
Эффективность усвоения МИ-2000 может быть достаточно высокой, если при изучении ее и использовании не ограничиваться имитационной игрой на радиационно-чистой местности, а проводить занятия в учебном лагере на своеобразном метрологическом полигоне, например, на участках местности, сохранивших Чернобыльский след, с хорошо изученными радиационными характеристиками [5] или на специальной учебной площадке типа гаммадрома [6].
Карточка регистрации мощности дозы гамма-излучения
Радиация, экспозиционная доза, мощность дозы
Радиация или ионизирующее излучение
Это вид излучения, который для человека не заметен, но постоянно присутствует в окружающей его среде в виде радиационного фона, в воздухе, строительных материалах, продуктах и т.д. или в виде излучения непосредственно от самих источников ионизирующего излучения (радиоактивные изотопы).
В настоящее время для контроля за радиационной обстановкой и воздействия радиации на биологическую среду выпускаются, как бытовые дозиметры, профессиональные дозиметры так и специальное дозиметрическое оборудование для фиксации малых доз радиации.
Гамма- или рентгеновское излучение образует в среде определенное количество ионов. Так как поглощенная энергия расходуется на ионизацию среды, то для измерения ее необходимо подсчитать число пар ионов, образующихся под действием излучения. Однако измерить число пар ионов непосредственно в глубине тканей живого организма сложно. В связи с этим для количественной характеристики рентгеновского и гамма-излучения, действующего на объект, определяют сначала экспозиционную дозу в воздухе, а затем расчетным путем определяют поглощенную дозу для тканей и органов организма.
Экспозиционную дозу определяют по ионизирующему действию излучения в определенной массе воздуха и только при значениях энергии рентгеновского и гамма-излучения в диапазоне от десятков килоэлектронвольт до трех мегаэлектронвольт.
Экспозиционная доза
Это количественная характеристика рентгеновского и гамма-излучения, основанная на их ионизирующем действии и выраженная суммарным электрическим зарядом ионов одного знака, образованных в элементарном объеме воздуха в условиях электронного равновесия.
Экспозиционная доза рассчитывается только для рентгеновского и гамма-излучения, ибо только кванты этих излучений достаточно долгопробежные и могут создавать равномерное наружное облучение.
Альфа- и бета-излучения короткопробежные, большая их часть поглощается одеждой и кожей, и не представляют большой опасности для внутренних органов.
За единицу экспозиционной дозы в Международной системе единиц (СИ) принят один кулон электрического заряда в одном килограмме облучаемого воздуха.
Кл/кг, это такая экспозиционная доза рентгеновских и гамма-лучей, под действием которой в 1 кг сухого воздуха образуется число пар ионов, суммарный заряд каждого знака которых равен одному кулону. Это число составляет 6,24х1018 пар ионов.
На практике до сих пор применяют внесистемную единицу экспозиционной дозы – рентген.
Рентген (Р), единица экспозиционной дозы, при которой в 1 см 3 воздуха (0,001293г) при нормальных условиях (00 С и 1013 ГПА) образуется 2,082 х 109 пар ионов. Обычно используют производные рентгена – дробные доли: миллирентген – мР (тысячные доли рентгена), микрорентген – мкР (миллионные доли рентгена (мкР = 10-6 Р, мР = 10-3 Р).
При определении действия радиации на какую-либо среду (особенно при облучении живого организма) необходимо учитывать не только общую дозу, но и время, за которое она получена. Поэтому вводится понятие мощность дозы.
Мощность экспозиционной дозы (уровень радиации)
Это доза, отнесенная к единице времени: Р/ч, мР/ч, мкР/ч.
В Международной системе единиц мощность экспозиционной дозы выражается в Кл/кг х с или А/кг (ампер на кг).
Взаимосвязь между единицами экспозиционной дозы следующая:
Эквивалентная доза
Поглощенная доза облучения, которая учитывает особенности действия любого вида ионизирующего излучения на биологическую ткань (или орган) человека.
Использовать само понятие эквивалентной дозы можно только для целей радиационной безопасности человека и в отношении низких доз облучения.
При более высоких дозах следует применять понятие поглощенной дозы.
Эффективная доза
Величина ионизирующего излучения, используемая, как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом возникновения в них отдаленных неблагоприятных эффектов излучения.
Единицы измерения эквивалентной и эффективной дозы:
Взаимосвязь между единицами эквивалентной и эффективной дозы следующая:
При радиационном контроле (оценке радиационной опасности обстановки), как правило используются понятия эффективной и эквивалентной дозы.
В оценке воздействия радиации на биологические объекты, как правило используется понятие поглощенной дозы.


