Что такое начальная фаза радиосигнала

Теория радиоволн: аналоговая модуляция

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Амплитудная модуляция

При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции

Источник

Гари Дэвис, Ральф Джонс

Мы начинаем публикацию большого курса, в котором последовательно будут рассмотрены наиболее важные теоретические вопросы, возможности и особенности различной аудиотехники, а также современные устройства для работы со звуком. В первой главе рассказывается о аудиосигнале, звуковых волнах и принципах работы звукоусилителной аппаратуры.

Введение

Профессиональная звукоусилительная аппаратура, как правило, сложнее обычных домашних стереосистем, поэтому, чтобы научиться правильно ее использовать, нужно хорошо разбираться в принципах ее работы.

Данный курс даст те знания, которые помогут не только надлежащим образом работать с системами усиления звука, но и позволят научиться собирать такие системы самостоятельно.

Глава 1

1.1 Аудиосигнал

Звуковые волны

Полный период колебания волны звукового давления состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис.1.1. Графическое представление синусоидальной звуковой волны

Периодом волны называется время одного полного колебания звуковой волны, он измеряется в секундах и определяется по уравнению:
Период = 1/Частота.

Скорость распространения звуковой волны в воздухе при нормальных условиях (при 15 °С на уровне моря) составляет 344 м/с (1130 фут/с). Скорость звука не зависит от его частоты. Реальное расстояние, которое звуковая волна определенной частоты проходит за один полный период, называется «длиной волны». Длина волны выражается уравнением:
Длина волны = Скорость звука / Частота

Звук как электрический сигнал

Звук (аудиосигнал) может быть передан в виде колебаний электрического напряжения или силы тока. В аудиоаппаратуре сила тока (или напряжение) сигнала пульсирует точно с такой же частотой, что и энергия звуковых колебаний, которую она представляет, а амплитуда электрического аудиосигнала изменяется пропорционально амплитуде звуковой волны.

Амплитуда (или сила аудиосигнала) называется «уровнем сигнала». Уровень акустического или электрического сигнала выражается в децибелах. (Эти единицы измерения подробно будут рассмотрены в гл. 4).

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 1.2. Графическое представление аудиосигнала
(один полный период синусоидальной волны).

Разница во времени между звуковой волной (или аудиосигналом) и определенной точкой отсчета, начальным моментом времени, называется «фазой сигнала». Фаза измеряется в градусах, и один полный период синусоидальной волны равен 360 °.

Точкой отсчета фазы может служить и другой сигнал. В этом случае опорный сигнал должен повторять форму сигнала, фазу которого измеряют. На рис. 1.3 показан процессор аудиосигналов с одним входом VIN и одним выходом VOUT. Здесь фаза выходного сигнала определяется относительно входного.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 1.3. Соотношение фаз сигналов на входе и выходе процессора

На рис. 1.3б представлен выходной сигнал, фаза которого совпадает с фазой входного сигнала: обе синусоидальные волны пересекают точку начала координат в одно и то же время, и они имеют одинаковое направления. На рис. 1.3в выходной сигнал отстает от входного на 90°: синусоидальная волна пересекает точку начала координат, соответствующей максимуму другой волны, направление обеих волн совпадает. На рис. 1.3г фазы выходного и входного сигналов отличаются на 180° (обе синусоидальные волны пересекают точку начала координат в один и тот же момент времени, но они имеют разное направление). На разных частотах относительная фаза сигнала может быть различной, именно такие сигналы чаще всего присутствуют в реальных аудиосхемах.

Сложение синусоидальных волн

Фаза сигнала имеет очень большое значение, так как от нее зависит то, как будет происходить наложение сигналов. При микшировании сигналов на микшерском пульте или смешивании звуковых волн в воздухе, их фазы складываются алгебраически. На рис. 1.4 показано сложение двух синусоидальных сигналов с одинаковыми уровнем и частотой, но разными фазами.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 1.4. Сложение двух синусоидальных сигналов с одинаковыми уровнем и частотой,
но разными фазами

Синусоидальные волны, показанные на рис. 1.4а, синфазны, поэтому при их сложении получается волна с удвоенной амплитудой. Синусоидальные волны, изображенные на рис 1.4б отличаются по фазе на 90°, поэтому амплитуда образующейся в результате их сложения синусоидальной волны в 1,414 больше, чем амплитуда исходных волн. Фаза синусоидальных волн на рисунке 1.4в отличается на 180°, поэтому при их сложении происходит полное подавление сигнала.

1.2 Назначение звуковой системы

Существуют также звуковые системы, предназначенные для эфирного вещания и воспроизведения записанных звуков. Такие системы во многом похожи на системы для усиления звука во время «живых» выступлений, только вместо микрофона или электрического музыкального инструмента в них предусмотрено либо устройство для воспроизведения с ленты, либо установлен компакт-диск проигрыватель, электропроигрыватель или радиотюнер.

1.3 Модель звуковой системы

Звуковая система усиливает звук за счет преобразования его в электрическую энергию, увеличения мощности этой электрической энергии с помощью электронных средств и последующего преобразования более мощной электрической энергии обратно в звук.

Устройства, установленные в звукозаписывающей и звуковоспроизводящей электронной аппаратуре и преобразующие энергию из одной формы в другую, называются «преобразователями», или «датчиками». Устройства, изменяющие один или несколько параметров аудиосигнала, называются «процессорами сигнала». Используя эти понятия, можно построить простейшую модель звуковой системы простейшего вида (рис. 1.5).

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 1.5 Модель простейшей звуковой системы

Датчик на входе системы (микрофон или звукосниматель) преобразует звук в колебания электрического тока или напряжения, которые являются точным представлением звука. Под аудиосигналом понимаются пульсации электрического тока или напряжения.

Процессор сигналов изменяет одну или несколько характеристик аудиосигнала. В простейшем случае он увеличивает мощность сигнала, такой процессор сигнала называется «усилителем». В реальных звуковых системах в этом блоке расположено много устройств: предусилители, микшерские пульты, процессоры эффектов, усилители мощности и др.

Выходные датчики (колонки или наушники) преобразуют усиленный или иным образом обработанный аудиосигнал обратно в звук.

1.4 Входные датчики

Входной датчик каждого типа имеет свои характеристики, и их необходимо знать, чтобы правильно пользоваться датчиком.

1.5. Выходные датчики

Датчик на выходе звуковой системы преобразует аналоговый сигнал в звук. На выход системы звукоусилительной аппаратуры чаще всего устанавливают датчики следующих типов:

Выходные датчики каждого типа имеют свои особенности, чтобы правильно ими пользоваться, необходимо знать принцип их работы. (Подробно выходные датчики будут рассмотрены в гл. 13).

1.6 Простейшая звуковая система

На рисунке 1.6 приведена схема простейшей звуковой системы, которая может быть установлена для проведения «круглого стола» в лекционном зале и предназначена для усиления голоса трех участников. В этой системе можно выделить три секции: входных датчиков, обработки сигнала и выходных датчиков:

Важную роль при использовании звуковых систем играет акустика помещения. Когда звук из колонок распространяется в зале, он изменяется в соответствии с акустическими параметрами помещения.

Помещение почти не будет влиять на звучание только в том случае, если оно не дает реверберации (отражение сигналов от стен). Но при сильной реверберации, устанавливая звуковую систему, акустику помещения следует учитывать обязательно, иначе ее влияние на звук может оказаться столь существенным, что звуковая система окажется неработоспособной.

Акустика помещения это составная часть звуковой системы, поэтому, установив последнюю, необходимо проверить, как она влияет на звук. (Влияние акустики помещения на звуковые системы описано
в гл. 5 и 6).

Рассмотренная схема лежит в основе любой звуковой системы (в больших просто увеличивается количество используемого оборудования), поэтому принципы, применимые к этой простой звуковой системе, распространяются и на концертные системы усиления звука.

Источник

Фазовый сдвиг. Фаза сигнала.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Фазовый сдвиг – что это? А фаза звукового сигнала? Попробуем немного разобраться в этом вопросе. Не факт, что смогу ясно разъяснить этот вопрос, но примерное понятие должно получиться.

Пролог

Музыканты, меломаны, а так же, любители “хай-эндовского” звука, в разговорах между собой, часто используют, вроде бы всем понятные термины – спектр, фаза, частота, меандр, глубина и локализация сцены, и прочие узкозначимые слова. Но зачастую, даже некоторые из “знатоков”, до конца не могут понять, что же это на самом деле такое.

Такие понятия как – “Фазовый сдвиг” очень часто упоминаются при проектировании кроссоверов для акустики. Подробно про кроссоверы мы уже поговорили чуть ранее.

При наличии интернета выяснить тот или иной вопрос не составляет проблем. В отсутствии такового – можно сходить в библиотеку, найти пару реально научных книжек и почитать саму теорию. Но все нынче стали на столько занятые, что даже выуживать информацию из интернета – времени нет. Попробуем найти простое объяснение – что же такое “фазовый сдвиг”?

Что означают эти термины на самом деле? Можно ли “пощупать” их истинное значение? Да, однозначно, можно. Сейчас мы попробуем разобраться в вопросе – “Что такое – фазовый сдвиг?”

Фаза сигнала

Для начала порассуждаем, что такое – “фаза сигнала”. Фаза сигнала никогда не существует сама по себе. Это виртуальное понятие. Вообще, можно сказать так: Фаза – это уровень сигнала в текущий момент времени, или иначе, – это уровень звукового давления в текущий момент времени в измеряемой точке пространства (к примеру, это место, где находится слушатель).

Вот картинка, изображающая звуковые волны в фазе. К примеру, звуковые сигналы двух каналов нашей акустики совпадают. В этом случае, музыка звучит чётко, без каких либо искажений. В музыкальном произведении можно услышать все задействованные инструменты, которые звукорежиссер слышал при записи. Имеется некая область звукового давления, где ощущается “эффект присутствия” – это то, о чем спорят меломаны и аудиофилы. Иными словами – получаем ожидаемый звук и впечатления.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

На следующей картинке ниже, фаза смещена на 90 градусов, или на четверть фазы. Этот эффект можно услышать в виде небольшого эха. Это может и не связано с оборудованием самой комнаты. Эффект звуковой задержки с небольшим смещением фазы вносит некую сумятицу в музыку, теряется “картинка”, исполнители “уходят в разные стороны”, появляется ощущение, что находишься в огромном зале с каменными стенами. Звуки становятся не естественными, искаженными.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Далее, мы наблюдаем смещение фаз на 180 градусов. То есть, акустика в этом случае играет в противофазе. Чуть ниже подробно об этом. В данном случае, общая “звуковая картина” на столько становится не понятной, что слушать музыку становится просто не интересно и противно. Звуки становятся “ватные”, многие часты просто могут отсутствовать, хотя они и воспроизводятся колонками. Может сложиться такое впечатление, что слушаешь музыку в завязанной шапке-ушанке.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Далее, немного теории без научных выкладок.

К примеру, слушая, сидя у себя дома, свои акустические системы, мы слышим, как они порождают в районе дивана те или иные переменные звуковые давления. Звуковые волны складываются друг с другом. Эти волны имеют разные частоты и амплитуду. Они то нарастают, то убывают.

Противофаза

А теперь предположим, что давления от обоих колонок (звуковые волны) изменяются одинаково, но имеют противоположную направленность. То есть, одна колонка излучает “плюсовые” волны, а другая колонка – “минусовые”. Это может случиться, когда слушатель, случайно, перепутал клеммы подключения одного из каналов (левый канал например).

Немного проще. Динамики правой колонки играют вперёд, а динамики в левой колонке играют назад, одновременно пытаясь воспроизводить одну и туже частоту. Одна колонка создаёт давление, скажем, 1 Паскаль, а другая – минус 1 Паскаль. Такой эффект называется – противофаза.

Общая громкость звука в том месте, где находится слушатель, теоретически, должна стремится к нулю, но это не означает, что какой либо звук вообще будет не слышно. В этом случае, может сильно поломаться “звуковая сцена”, “картинка” музыкального произведения, а в каком либо месте помещения звук реально будет затухать, но не совсем. Звук станет “смазанным” и исчезнут некоторые частотные составляющие из общего звукового сигнала.

Не будем вдаваться в непростую научную формулировку, приводя формулы. Можно сказать так, что из второй колонки звук доходит к слушателю, но с задержкой по времени (не забываем, что сигнал на колонки подаётся одинаковый!). И задержка в этом случае получается именно 180 градусов. Почему так? Попробуем разобраться на картинке, нагляднее – понятнее.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

360 градусов – длина периода сигнала (Фаза), 180 градусов – половина периода сигнала.

Фазовый сдвиг

А теперь, мы дошли до момента, когда можно уже разобрать вопрос – “Что такое – фазовый сдвиг?”

Фаза — это временная связь двух сигналов. И в течении периода колебания меняется от 0 до 360 градусов. Потом опять – от 0 до 360, и так далее. Можно сказать, что это мгновенный уровень сигнала в определенной точке времени внутри периода. Саму фазу мы не слышим, но слышим фазовый сдвиг одного сигнала относительно другого.

Вики про это говорит так: Сдвиг фаз — это разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой.

Фазовый сдвиг является безмерной величиной и измеряется в градусах или долях периода.

Вывод

Предположим, вы подключили два динамика к выходу усилителя (пусть физически это будут ваши акустические системы). Один динамик как положено – плюс на плюс, минус на минус. А второй, перепутали и он получился подключенным плюс на минус и минус на плюс. Включив усилитель, что мы услышим? Вероятнее всего – жалкое подобие звука. Один динамик будет как-бы гасить сигнал другого своими звуковыми волнами.

На картинках ниже будет нагляднее. Представим, что это мы видим на экране осциллографа, который измеряет сигналы левого и правого каналов вашего усилителя.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигналаНа первой картинке левый и правый канал – в фазе. Сигнал одинаков в обоих каналах. Линии идеально повторяют сигнал. У них синхронная амплитуда на всем протяжении. Тут можно сказать, что сигналы находятся «в фазе». Если практически, то суммирующий уровень сигнала будет усиливаться сигналами левого и правого каналов.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Вторая картинка демонстрирует осциллограмму полного не совпадения. “Горб” левого канала по времени совпадает с “ямой” правого. Чисто по школьной физике – в результате сложения таких колебаний, в идеале, получится ноль. Эти сигналы будут взаимно подавлять друг друга. Сигналы в противофазе.

Фазовый сдвиг подразумевает запаздывание первого сигнала по времени относительно второго.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигналаПри двух гармонических колебаниях одной частоты результатом сдвига фаз будет частичное ослабление сигнала. Степень ослабления результирующего сигнала будет зависеть как раз от этого самого сдвига фаз. В предельном случае (в противофазе), на выходе получится абсолютный ноль.

Все эти картинки и рассуждения, о физических свойствах звуковых волн, отдаленно относятся к практике, к реальности. Звуки любого музыкального инструмента нельзя назвать – “одночастотным сигналом” (как осциллограмма на картинках). Частичный сдвиг фаз может ослаблять одни частоты по сравнению с другими. А иногда, усиливать некоторые из них.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Спектральный анализ сигналов

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Не так давно товарищ Makeman описывал, как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ». Давайте кратенько разберём, что же это за зверь такой.

Немного особой, Фурье-магии

Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя — ряд Фурье.

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье.
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром.
Небольшое отступление: спектр преобразования Фурье — в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра — это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы — соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию — спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье — дискретное преобразование Фурье (ДПФ).

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции — F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Оконная функцияУровень боковых лепестков (дБ)
Окно Дирихле (прямоугольное окно)-13 дБ
Окно Ханна-31.5 дБ
Окно Хэмминга-42 дБ

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование.

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w0 – wгет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос — откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат — количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию — плотность распределения. Т.е., значения конечных разностей от функции распределения.

Что такое начальная фаза радиосигнала. Смотреть фото Что такое начальная фаза радиосигнала. Смотреть картинку Что такое начальная фаза радиосигнала. Картинка про Что такое начальная фаза радиосигнала. Фото Что такое начальная фаза радиосигнала
Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на GitHub.

Единственной сложностью стала генерация PDF отчёта по результатам анализа: PDFbox ну никак не хотел работать с кириллицей. К слову, не хочет и сейчас.

В проекте использовались библиотеки:
JFreeChart – отображение графиков
PDFBox – построение отчёта
JLatexMath – рендер Latex формул

В итоге, получилась довольно массивная программа (13.6 мегабайт), удобно реализующая поставленную задачу.

Есть возможность как вырезать гармоники вручную, так и доверить эту задачу алгоритму.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *