Что такое неметалличность элементов что является количественной характеристикой неметалличности
Металличность и неметалличность
Потенциал ионизации, т.е. способность отдавать электроны характеризует металличность элементов. Металличность по группам сверху вниз увеличивается, т.к. внешние электроны находятся на более дальнем энергетическом уровне от ядра и энергии для их отрыва надо затратить все меньше и меньше. Сродство к электрону характеризует неметалличность элементов, т.е. способность принимать электроны, неметалличность в группах возрастает снизу – вверх. По периоду неметаллические свойства возрастают слева – направо. Период начинается с типичного металла, и через неметалл заканчивается инертным газом. В периодах сродство к электрону возрастает слева – направо, т.к. увеличивается заряд ядра атома. Чем сильнее притягивается электрон к атому, тем больше его электроотрицательность, а электроотрицательность по периодам слева направо увеличивается, а в группах увеличивается снизу – вверх.
S 16 1s 2 2s 2 2p 6 3s 2 3p 4
Cr 24 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4
У серы и хрома 6 валентных электронов, согласно номеру групп, но у серы все электроны находятся на внешнем энергетическом уровне, поэтому сере легче принять электроны, т.о. сера типичный неметалл. У хрома на внешнем уровне из 6 валентных электронов на внешнем уровне находится 2 электрона, поэтому ему легче отдать электроны, т.о., хром типичный металл. Но и сера и хром могут проявлять степень окисления +6, их оксиды − ЭО3 − обладают кислотными свойствами. Все инертные газы на внешнем уровне имеют 8 электронов, они не могут принять электроны на внешний уровень, и не хотят их отдавать, т.к. внешняя 8-и электронная оболочка является энергетически выгодной для атома. Из всего вышесказанного, видим, что свойства элементов определяются числом электронов расположенных на внешнем энергетическом уровне атома, затем на предыдущем, и общим числом электронов в атоме.
1.2. ХИМИЧЕСКАЯ СВЯЗЬ
Ранее мы рассматривали электронное строение атомов и основные закономерности ПС Д.И. Менделеева. Следующим шагом в понимании строения вещества служит выявление взаимодействия между атомами, т.е. определения и понимания такого понятия, как химическая связь. Физико-химическая природа вещества целиком определяется его химическим или кристаллохимическим строением. Химическое и кристаллохимическое строение в первую очередь определяется характером межатомных связей всех атомов, входящих в состав данного вещества.
Химическая связь – явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающих частиц, которое сопровождается уменьшением полной энергии системы (молекулы, кристалла, комплекса и т.п.).
Химическая связь характеризуется энергетическими и геометрическими параметрами. Важнейшей энергетической характеристикой служит энергия химической связи, определяющая её прочность. К геометрическим параметрам относятся длина химической связи, углы между связями в молекулах, кристаллах, комплексах и т.п.
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)
Зависимость свойств элементов от строения их атомов
Теория строения атомов объясняет периодическое изменение свойств элементов при увеличении порядкового номера.
Важнейшими свойствами элементов являются металличность (металлические свойства) и неметалличность (неметаллические свойства).
Металличность — это способность атомов элемента отдавать электроны. Количественной характеристикой металличности элемента является энергия ионизации (I).
Энергия ионизации атома — это количество энергии, которое необходимо для отрыва электрона от атома элемента (Э), т. е. для превращения атома в положительно заряженный ион:
Э 0 + I = Э + + ē
Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.
Неметалличность — это способность атомов элемента присоединять электроны.
Количественной характеристикой неметалличности элемента является сродство к электрону (Еср). Сродство к электрону — это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в отрицательно заряженный ион:
Э 0 + ē = Э — + Еср
Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.
Универсальной характеристикой металличности и неметалличности элементов является электроотрицательность элемента (ЭО).
Электроотрицательность элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.
Чем больше металличность, тем меньше ЭО.
Чем больше неметалличность, тем больше ЭО.
При определении значений относительной электроотрицательности различных элементов за единицу принята ЭО лития.
Относительная электроотрицательность элементов I – IV периодов
Рассмотрим, как изменяются некоторые характеристики элементов в малых периодах слева направо:
— Заряд ядер атомов увеличивается.
— Число электронных слоев атомов не изменяется.
— Число электронов на внешнем слое атомов увеличивается от до 8.
— Радиус атомов уменьшается.
— Прочность связи электронов внешнего слоя с ядром увеличивается.
— Энергия ионизации увеличивается.
— Сродство к электрону увеличивается.
— Металличность элементов уменьшается.
— Неметалличность элементов увеличивается.
В больших периодах с увеличением заряда ядер электронное строение атомов изменяется сложнее, чем в малых периодах. Поэтому и изменение свойств элементов в больших периодах более сложное.
Рассмотрим это изменение свойств на примере четвертого периода. Он начинается, как и малые периоды, двумя s-элементами — K и Са, в атомах которых на внешнем слое находится соответственно 1 и 2 электрона. Эти элементы имеют наибольшие радиусы атомов среди всех элементов IV периода, поэтому электроны внешнего слоя слабо связаны с атомами, и эти элементы являются типичными металлами. Эти элементы имеют самые низкие в IV периоде значения ЭО.
В атомах следующих десяти элементов (от Sc до Zn) происходит заполнение d-подуровня предвнешнего слоя; на внешнем слое число электронов в атомах всех этих элементов равно 2 или 1 (Cr, Сu). Радиусы атомов d-элементов мало различаются между собой. Поэтому d-элементы похожи по своим свойствам — все они являются металлами (но менее активными, чем K и Са, которые имеют меньшие заряды ядер и большие радиусы атомов). ЭО всех d-элементов IV периода изменяется в небольшом интервале от 1,3 до 1,9.
В атомах последних шести элементов IV периода (от Gа до Kr) заполняется р-подуровень внешнего слоя, поэтому количество электронов на внешнем слое увеличивается от 3 до 8. Радиусы атомов этих элементов уменьшаются слева направо. Уменьшение радиуса атомов и увеличение числа электронов на внешнем слое являются причиной уменьшения металличности и увеличения неметалличности элементов слева направо. ЭО этих элементов изменяется от 1,6 у Gа до 2,8 y Br.
Рассмотрим, как изменяются некоторые характеристики элементов в главных подгруппах сверху вниз:
В малых периодах закономерно изменяется высшая валентностъ элементов: во втором периоде от I у Li до V у N; в третьем периоде от у Na до VII у Cl. В большом четвертом периоде высшая валентность увеличивается от I у K до VII у Мn; у следующих элементов она понижается до II у Zn, а потом снова увеличивается от III у Gа до VII у Вr.
Периодическое изменение высшей валентности объясняется периодическим изменением числа валентных электронов в атомах.
Валентные электроны — это электроны, которые могут участвовать в образовании химических связей.
В атомах s- и р-элементов валентными являются, как правило, все электроны внешнего слоя.
В атомах d-валентными являются электроны внешнего слоя (2 или 1), а также все или некоторые d-электроны предвнешнего слоя.
Число валентных электронов для большинства элементов равно номеру группы.
Значение периодического закона и периодической системы элементов Д. И. Менделеева
Ученые разных стран — У. Одлинг и Дж. Ньюлендс (Англия), Ж. Дюма и А. Шанкуртуа (Франция), И. Деберёйнер и Л. Мёйер (Германия) и другие пытались классифицировать химические элементы. Они установили существование групп, похожих по свойствам элементов, но не обнаружили взаимосвязь всех химических элементов. Эту взаимосвязь открыл великий русский ученый Д. И. Менделеев и выразил ее в периодическом законе. На основе периодического закона Д. И. Менделеев предсказал существование двенадцати элементов, которые в то время еще не были открыты и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал и условно назвал их «экабором», «экаалюминием» и «экасилицием», так как считал, что эти элементы должны быть похожи по свойствам на бор, алюминий и кремний. Через несколько лет (еще при жизни Менделеева) эти элементы были открыты и получили названия — галлий Gа, скандий Sc и германий Gе.
Физический смысл периодического закона стал понятен после создания теории строения атома. Но сама эта теория развивалась на основе периодического закона и периодической системы.
Периодический закон — один из основных законов природы и важнейший закон химии. Современный этап развития химической науки начинается с открытия периодического закона. Он помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Этот закон играет важную роль в развитии всего естествознания (физики, биологии и других наук).
Периодический закон имеет большое философское значение — он подтвердил наиболее общие законы развития природы.
Что является количественной характеристикой металличности
Теория строения атомов объясняет периодическое изменение свойств элементов при увеличении порядкового номера.
Важнейшими свойствами элементов является:
– металличность (металлические свойства) – это способность атома элемента отдавать электроны.
Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.
Неметалличность – это способность атомов элементов присоединять электроны.
Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.
Универсальной характеристикой металличности и неметалличности элементов является электро-отрицательность элемента (ЭО).
ЭО элемента характеризует способность атома притягивать к себе электроны других атомов в молекуле.
Чем больше металличность, тем меньше ЭО.
Чем больше неметалличность, тем больше ЭО.
При определении значений относительной электроотрицательности различных элементов за единицу принята ЭО лития.
В П.С. ЭО в периодах слева направо и в группах снизу вверх увеличивается. Самый ЭО элемент фтор.
В периодах закономерно изменяется и высшая валентность элементов: во II периоде от 1 у лития до 4 у углерода; в III периоде от 1 у натрия до 7 у хлора.
В большом IV периоде высшая валентность увеличивается от 1 у калия до 7 у марганца; у следующих элементов она понижается до 2 у цинка, а затем снова увеличивается от 3 у галлия до 7 у брома.
Это объясняется периодическим изменением числа валентных электронов в атомах, то есть тех электронов, которые участвуют в образовании химических связей.
Вопросы для самоконтроля
1. Дайте формулировку периодического закона Менделеева.
2. Что характеризует главное квантовое число и какие значения принимает?
3. Побочное квантовое число и какие значения оно принимает.
4. Как называются и какую форму имеют орбитали с 1=0, 1=1.
5. Что характеризует магнитное квантовое число и какие значения оно принимает?
7. Что характеризует магнитное квантовое число и какие значения оно принимает?
8. Как формируется принцип Паули?
9. Какие электроны называются спаренными и какие спины они имеют?
10. Чем объясняется периодическое изменение свойств химических элементов и их соединений при увеличении порядкового номера?
11. Какие элементы называются, p-, d-, элементами и сколько их в каждом периоде?
12. Какие элементы называются f – элементами и в каких периодах находятся и где располагаются в периодической системе?
13. Как изменяются радиус атомов, энергия ионизации, сродство к электрону, электроотрицательность, металичность и неметаличность элементов в малых периодах?
14. Почему в главных подгруппах металличность элементов увеличивается, а неметаличность уменьшается? Как изменяется ЭО в главных подгруппах?
15. Какое значение имеют периодический закон и периодическая система элементов Д.И. Менделеева?
это способность атома элемента отдавать электрон. Количественной характеристикой этой величины является энергия ионизации (I) Молекула — мельчайшая частица вещества, определяющая его основные химические свойства и состоящая из атомов, связанных между собой химическими связями.
Металличность – элемент
Металличность элементов увеличивается справа налево и сверху вниз при движении по Периодической таблице. [1]
Степень металличности элемента оценивается по легкости отщепления электрона его атомом. [2]
Почему в главных подгруппах металличность элементов увеличивается, а неметалличность уменьшается. Как изменяется ЭО в главных подгруппах. [3]
С увеличением радиусов атомов и металличности элементов в группе увеличивается способность элементов образовывать кислородные соединения. Поэтому азот с трудом образует с кислородом оксид азота ( II) NO, который затем окисляется до трех – и пятизарядного азота; азот встречается в природе преимущественно в свободном состоянии. Фосфор в природе находится исключительно в окисленном состоянии, в виде солей ортофосфорнои кислоты; это объясняется тем, что фосфор энергично соединяется с кислородом, образуя высшие кислородные соединения. В отличие от фосфора, мышьяк в природе существует главным образом в виде сульфидов. [4]
Почему в главных подгруппах сверху вниз металличность элементов увеличивается, а неметалличность уменьшается. Как изменяется ЭО в главных подгруппах. [5]
При переходе от I класса к III металличность элемента уменьшается, и решетка делается все более сложной. [6]
Следовательно, способность атомов отдавать электроны и металличность элементов в периодах будет уменьшаться, а в подгруппах – увеличиваться с ростом порядкового номера элемента. [7]
Величина потенциала ионизации может служить мерой большей или меньшей металличности элемента : чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента. [9]
Величина потенциала ионизации может служить мерой большей или меньшей металличности элемента : чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента. [10]
Величина потенциала, лионизации может служить мерой большей или меньшей металличности элемента : чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента. [11]
При этом большей частью упускается из виду, что подобное поведение водорода характерно для него лишь при реакциях, осуществляющихся в водных растворах. Степень металличности элемента оценивается по легкости отщепления электрона его атомом. [14]
Пособие-репетитор по химии
ЗАНЯТИЕ 5
10-й класс (первый год обучения)
Продолжение. Начало см. в № 22/2005; 1, 2, 3/2006
Периодический закон и система химических элементов Д.И.Менделеева
План
1. История открытия периодического закона и системы химических элементов Д.И.Менделеева.
2. Периодический закон в формулировке Д.И.Менделеева.
3. Современная формулировка периодического закона.
4. Значение периодического закона и системы химических элементов Д.И.Менделеева.
5. Периодическая система химических элементов – графическое отражение периодического закона. Строение периодической системы: периоды, группы, подгруппы.
6. Зависимость свойств химических элементов от строения их атомов.
1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.