Что такое ненатуральные числа в математике

Виды чисел.

У нас есть числа натуральные, целые, рациональные и иррациональные, а также вещественные или действительные и еще есть другие, но в школьной программе в основном используют эти числа.

Натуральные числа ( N ) − это числа, используемые для счета предметов. Нуль не является натуральным числом.
Например: 1; 2; 3; 132; 168; 326; 548; 10050…

Целые числа ( Z ) — множество чисел, получающееся в результате арифметических операций сложения (+) и вычитания (−) натуральных чисел.
Например: …−3; −2; 1; 0; 548; 10050…

Рациональные числа ( Q ) – это положительные и отрицательные числа можно представить в виде обыкновенной несократимой дроби вида:
Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике
где m−целое число (числитель), n – натуральное число (знаменатель).
Например:
Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Иррациональные числа ( I ) − числа, которые не представимыми в виде дроби вида
Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике
Например: √2; √5; π; e

Вещественные (действительные) числа ( R ).
Рациональные числа и иррациональные числа образуют множество действительных чисел.
Изобразим это множество чисел в виде рисунка:
Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Видно их вложенность друг в друга.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Источник

Какие числа называются целыми

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение целых чисел

Что важно знать о целых числах:

Целые числа на числовой оси выглядят так:

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.

Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.

Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.

Выглядит эти ребята вот так:

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Последовательность целых чисел можно записать так:

Свойства целых чисел

Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:

Источник

Натуральные числа

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Числа. Натуральные числа.

Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.

Всякое натуральное число легко записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Сравнение натуральных чисел.

Таблица разрядов и классов чисел.

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Действия над натуральными числами.

1. Сложение натуральных чисел результат: сумма натуральных чисел.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Формулы для сложения:

В основном, сложение натуральных чисел выполняется « столбиком ».

2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Формулы для вычитания:

Вычитание натуральных чисел удобно производить « столбиком ».

3. Умножение натуральных чисел : произведение натуральных чисел.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Формулы для умножения:

(а + b) ∙ с= а ∙ с + b ∙ с

(а – b) ∙ с = а ∙ с – b ∙ с

4. Деление натуральных чисел – операция, обратная операции умножения.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Формулы для деления:

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда в выражении есть скобки – сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

Источник

Математика

Тестирование онлайн

Натуральные числа

Это числа, которые используются при счете: 1, 2, 3. и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N.

Целые числа. Положительные и отрицательные числа

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z.

Рациональные числа

Множество рациональных чисел обозначается Q. Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например: Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Множество иррациональных чисел обозначается J.

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R.

Округление чисел

Округлить 8,759123. с точностью до целой части.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Округлить 8,759123. с точностью до десятой части.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Округлить 8,759123. с точностью до сотой части.

Что такое ненатуральные числа в математике. Смотреть фото Что такое ненатуральные числа в математике. Смотреть картинку Что такое ненатуральные числа в математике. Картинка про Что такое ненатуральные числа в математике. Фото Что такое ненатуральные числа в математике

Округлить 8,759123. с точностью до тысячной части.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *