Что такое номинальная скорость двигателя
Номинальная частота вращения двигателя
Смотри также родственные термины:
3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем.
Полезное
Смотреть что такое «Номинальная частота вращения двигателя» в других словарях:
номинальная частота вращения двигателя S — 3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем. Источник: ГОСТ ИС … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения двигателя в минуту — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN rated engine speed … Справочник технического переводчика
номинальная частота вращения — 3.14 номинальная частота вращения: Установленная предприятием изготовителем частота вращения, при которой достигается номинальная мощность. Источник … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения коленчатого вала — номинальная частота вращения коленчатого вала: Расчетное значение частоты вращения коленчатого вала. Источник: ГОСТ 30419 96: Устройства воздухообеспечения тормозного оборудования. Компрессоры. Общие требования безопасности … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. [ГОСТ Р 51852 2001] Тематики установки газотурбинные EN rated speed … Справочник технического переводчика
Номинальная частота вращения коленчатого вала (ротора) двигателя — По ГОСТ 14846 Источник: ГОСТ 20306 90: Автотранспортные средства. Топливная экономичность. Методы испытаний … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения вала — 39. номинальная частота вращения вала: Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. Источник: ГОСТ Р 51852 2001: Установки газотурбинные. Термины и определения оригинал документа См … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения синхронного генератора — 3.1.5.1 номинальная частота вращения синхронного генератора (rated speed of synchronous generator rotation): Частота вращения nr, G, определяемая по формуле где fr номинальная частота, Гц; p число пар полюсов. Источник … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения асинхронного генератора — 3.1.5.2 номинальная частота вращения асинхронного генератора (rated speed of asynchronous generator rotation): Частота вращения nr,G, определяемая по формуле где sr,G расчетное значение скольжения асинхронного генератора (rated slip of… … Словарь-справочник терминов нормативно-технической документации
номинальная частота вращения генератора — 3.1.5 номинальная частота вращения генератора (rated speed of generator rotation); nr, G: Частота вращения, необходимая для генерирования напряжения номинальной частоты. Источник … Словарь-справочник терминов нормативно-технической документации
Выбор номинальной скорости двигателя
При проектировании ЭП важную роль играет правильный выбор скорости двигателя. От этого зависит масса установки, ее габариты, быстродействие в переходных режимах, потери и в значительной степени стоимость. В зависимости от условий работы привода существует два подхода к выбору скорости двигателя [1, 2].
Первый подход. Наиболее просто задача выбора скорости двигателя решается, когда исполнительный механизм работает в установившемся режиме. В этом случае ориентируются на то, что рабочая частота вращения исполнительного механизма значительно меньше , в то время как номинальная частота вращения двигателя более
и между двигателем и ИО, как правило, находится редуктор. Ориентировочно мощность двигателя может быть оценена по следующей формуле:
. (1.29)
В этом выражении — активная длина якоря или ротора;
— диаметр якоря или ротора;
— некоторый постоянный коэффициент (
). В результате габариты машины определяются развиваемым моментом. При этом с ростом скорости, при тех же габаритах, мощность машины увеличивается. С целью уменьшения габаритов машины и ее стоимости желательно иметь наибольшую частоту вращения якоря или ротора. Особенностью данного подхода является то, что скорость двигателя выбирают из условия минимальных затрат. Но при уменьшении стоимости двигателя, с увеличением частоты вращения, растет стоимость редуктора. Поскольку стоимость редуктора определяется передаваемым моментом, то для мощных приводов затраты на редуктор особенно велики, поэтому стремятся упростить редуктор, уменьшая номинальную частоту вращения двигателя. Для мощных приводов номинальная частота вращения двигателя составляет
. В установках малой мощности затраты на редуктор значительно меньше и поэтому стремятся увеличить частоту вращения двигателя, используя двигатель с
. В результате выбор двигателя осуществляется на основании технико-экономического расчета с учетом номенклатуры серийно выпускаемых двигателей.
Второй подход. Для установок, работающих в переходных режимах, критерий другой. В этом случае обычно исходят из максимальной производительности установки, которая определяется длительностью переходного процесса. Поэтому нужен двигатель, который обеспечивает минимальную длительность переходных процессов. Следует иметь в виду, что длительность переходного процесса определяется моментом инерции привода, а он, в свою очередь, зависит от момента инерции двигателя, момента инерции РМ и передаточного числа редуктора. В результате, помимо выбора двигателя, задача сводится и к определению оптимального передаточного числа редуктора.
Например, для приводов, работающих в повторно кратковременном режиме, передаточное число редуктора:
, (1.30)
где — оптимальное передаточное число редуктора (с точки зрения минимального времени пуска или останова);
— момент сопротивления РМ;
— момент двигателя при пуске или торможении;
и
— моменты инерции РМ и двигателя, приведенные к валу РМ.
Из этого выражения легко найти (пренебрегая
):
. В результате ориентировочно частоту вращения двигателя и передаточное число редуктора для данной частоты вращения вала РМ выбирают таким образом, чтобы
.
Но на практике часто интересует минимальное время не разгона или торможения, а перемещения РО из одного положения в другое. Учитывая, что этот процесс идет по трапециевидной диаграмме (см. выше), важно обеспечить минимальное время разгона и торможения. В этих случаях обычно для выбора передаточного числа редуктора используют следующее выражение:
. (1.31)
Для повышения быстродействия бывает целесообразно иметь передаточное число редуктора несколько меньше, чем определенное из установившейся скорости механизма при номинальной скорости двигателя. Тогда двигатель будет работать на пониженных скоростях, а длительность переходных процессов уменьшится.
1.8. Переходные процессы [1, 2, 4, 9]
На динамику ЭП влияет множество факторов, основными из которых являются механическая инерция частей ЭП и электромагнитная инерция электрических цепей. Когда механическая инерция является определяющей, модель ЭП строят из учета только механических процессов обусловленных уравнением движения ЭП. Такие переходные процессы называются механическими. Когда влияние электромагнитных процессов достаточно велико, их учитывают, определяя иногда не одну, а несколько постоянных времени. Это значительно усложняет расчет ЭП, а полученная в результате рассмотрения система называется электромеханической. Чаще всего она нелинейна, и линеаризация ее возможна лишь на отдельных участках.
Другой особенностью ЭП является необходимость рассматривать систему при одновременном изменении управляющего и возмущающего воздействий. То есть, рассматривая переходные процессы по управлению, приходится обязательно учитывать нагрузку привода. Статический момент на валу РМ может носить сложный характер. Он может зависеть от скорости, времени, угла поворота и других факторов. Эту зависимость не всегда удается выразить в аналитической форме, и поэтому приходится рассматривать идеализированные модели.
Частота вращения: формула
Количество повторений каких-либо событий или их возникновения за одну единицу таймера называется частотой. Это физическая величина измеряется в герцах – Гц (Hz). Она обозначается буквами ν, f, F, и есть отношение количества повторяющихся событий к промежутку времени, в течение которого они произошли.
При обращении предмета вокруг своего центра можно говорить о такой физической величине, как частота вращения, формула:
В системе СИ обозначается как – с-1 (s-1) и именуется как обороты в секунду (об/с). Применяют и другие единицы вращения. При описании вращения планет вокруг Солнца говорят об оборотах в часах. Юпитер делает одно вращение в 9,92 часа, тогда как Земля и Луна оборачиваются за 24 часа.
Номинальная скорость вращения
Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:
К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.
Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.
Угловая скорость
Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.
Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.
Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:
Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.
Угловая скорость в конкретных случаях
На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.
Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.
В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:
ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.
К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.
Как определить угловую скорость
Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:
Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.
Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.
Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:
ω = ϕ / t = 6 * t / t = 6 с-1
Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.
Угол поворота и период обращения
Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.
Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.
Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.
Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.
В этом случае находят применения такие характеристики, как:
Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.
Циклическая частота вращения (обращения)
Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.
Циклическая частота вращения – это количество оборотов тела за 2*π секунды.
У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.
Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.
При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:
Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.
Переход от угловой к линейной скорости
Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:
Так как ω = 2*π*ν, то получается:
Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.
К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.
Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:
а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.
Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.
Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.
Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.
Видео
Что такое номинальная скорость и синхронная скорость двигателя
Как повысить эффективность электродвигателя
Большинство насосов приводятся в действие с помощью асинхронных электродвигателей, это означает, что двигатели вносят вклад в общую эффективность насосной системы.
Данная статья посвящена исследованию ключевых аспектов эффективности электродвигателя, которые находятся под контролем пользователя. 2/3 всей вырабатываемой электроэнергии, потребляются электродвигателями, которые используются в различном оборудовании на промышленных площадках всего мира.
Электродвигатели развиваются на протяжении последних 150 лет. Не смотря на то, что существует большой выбор из различных конструкций двигателей (например синхронные, асинхронные или постоянного тока), наиболее используемым в промышленности на сегодняшний день является асинхронный электродвигатель переменного тока, т.к. является более надежным. Также асинхронный электродвигатель предпочтительнее при использовании частотного преобразователя. Достаточно высокая эффективность в сочетании с простотой изготовления, высокой надежностью и низкой ценой делает его самым широко-применяемым типом двигателя по всему миру.
Рисунок 1: Асинхронный электродвигатель с короткозамкнутым ротором
На рисунке 1 показана обычная компоновка асинхронного электродвигателя с тремя обмотками статора, которые расположены вокруг сердечника. Обмотка ротора состоит из медных или алюминиевых стержней, торцы которых накоротко замкнуты кольцами. Кольца изолированы от ротора. В подшипниковом узле, как правило, используются шарикоподшипники с консистентной смазкой, за исключением очень больших двигателей. Смазка масляным туманом может значительно увеличить срок службы подшипников. Во всех асинхронных электродвигателях используется трехфазный ток, за исключением самых маленьких промышленных процессов (ниже 2 л.с.). Для запуска фазных двигателей необходимы другие средства, такие как щетки или конденсаторный пуск (использование конденсатора во время пуска).
Проблема эффективности двигателя
При использовании электродвигателя в качестве привода насоса потери энергии и падение давления в результате неэффективности насоса обычно гораздо больше, чем потери энергии связанные с неэффективностью электродвигателя, но они не являются незначительными. Оптимизация эффективности электродвигателя насоса может обеспечить реальную экономию стоимости рабочего цикла на протяжении всего срока службы насоса/электродвигателя. Ключевыми факторами, которые влияют на эффективность асинхронного двигателя являются:
Эффективность электродвигателя при частичной загрузке
Как показано на рисунке 2, эффективность асинхронного электродвигателя изменяется вместе с
относительной нагрузкой на электродвигатель по сравнению с номинальной характеристикой. Вплоть до нагрузки в 50% эффективность большинства электродвигателей остается линейной и для некоторых электродвигателей достигает пика у отметки 75%. Электродвигатели могут работать при нагрузке меньше 50% только в течение короткого промежутка времени и не могут эксплуатироваться при нагрузках меньше 20% от номинальных. Таким образом, когда отрегулированные рабочие колеса или насосы возвращаются к своим кривым «напор-подача», необходимо оценить воздействие относительной нагрузки на электродвигатель.
Рисунок 2: Эффективность электродвигателя для 100-сильных моторов — Обычные кривые характеристик при нормальном диапазоне нагрузок электродвигателя
На рисунке 2 также показано влияние скорости вращения на максимально-достижимую эффективность. 4-х полюсный электродвигатель при номинальных 1800 об/мин выходит на самый высокий КДП, а 2-х полюсный при номинальных 3600 об/мин дает низкую эффективность. Таким образом, хотя насосы с номинальной частотой вращения 3600 об/мин могут быть более эффективными (и иметь низкую закупочную стоимость), чем насосы со скоростью вращения 1800 об/мин, электродвигатели последних могут быть более эффективными, плюс эти насосы, как правило, имеют более низкий NPSHR и энергию всасывания, не говоря уже о более длительном сроке службы. Также следует отметить, что номинальная мощность электродвигателя влияет на его эффективность, большие электродвигатели имеют большую эффективность, чем малые.
Скорость вращения асинхронного электродвигателя
Синхронная скорость вращения асинхронного электродвигателя рассчитывается по следующей формуле:
n = 120*f/p
где:
n = скорость вращения в об/мин
f = частота питающей сети (Гц)
p = количество полюсов (min = 2)
Для регулирования частоты вращения электродвигателя без использования внешних механических устройств необходимо регулировать напряжение и частоту подаваемого тока. Некоторые электродвигатели могут быть изготовлены с несколькими обмотками (количество полюсов) для достижения двух или более различных скоростей вращения.
Асинхронные электродвигатели вращаются со скоростью, которая меньше скорости вращения магнитного поля (на 1-3% при полной нагрузке). Разница между фактической и синхронной частотой вращения называется скольжением. Для новых более энергоэффективных электродвигателей скольжение имеет тенденцию уменьшаться в отличие от старых электродвигателей с обычным КПД. Это означает, что при заданной нагрузке энергоэффективные электродвигатели работают немного быстрее.
Рисунок 3. Эффективность при полной и частичной загрузке двигателя с низким и высоким КПД
Электродвигатели с высоким КПД
На рисунке 3 изображен пример возможного повышения эффективности, когда старый электродвигатель с обычной эффективностью заменяется новым, имеющим более высокий КПД. Как упоминалось ранее, электродвигатели с высоким КПД работают с меньшим скольжением, что дает некоторое увеличение скорости вращения, а следовательно напор насоса и производительность становятся несколько больше.
Однако, использование электродвигателей с высоким КПД в некоторых (с изменением подачи) процессах будет не оправданно, из-за большей скорости вращения (и напора насоса), до тех пор пока существующие электродвигатели по-прежнему слабо загружены (работающие с низким КПД). Т.к. входная мощность на валу насоса пропорциональна скорости в кубе, простая замена старого электродвигателя новым с высоким КПД не обязательно приведет к снижению потребления энергии.
С другой стороны, если немного большая подача и напор для насоса — это хорошо, замена старого
электродвигателя с обычным КПД на новый с высоким КПД может быть оправдана.
Коэффициент мощности электродвигателя
Другая проблема, которая входит в игру с характеристиками асинхронного электродвигателя (которая имеет косвенное влияние на энергопотребление) называется «Коэффициент Мощности«. Некоторые
коммунальные предприятия обязывают клиентов платить дополнительные сборы за низкие значения
коэффициентов мощности. Потери в сети происходят за счет того, что при меньшем коэффициенте
мощности требуется большее количество тока, что приводит к серьезным потерям энергии. Как и КПД,
коэффициент мощности электродвигателя также снижается с уменьшением нагрузки на него практически по линейному закону приблизительно до 50% нагрузки.
Определение коэффициента мощности:
Фазовый сдвиг (задержка) синусоидальной волны тока от синусоиды напряжения, который выбарабывает меньшее количество полезной мощности.
Сдвиг, вызванный необходимым током намагничивания двигателя
PF = Pi/KVA
Где:
KVA = VxIx(3) 0.5 /1,000
Нижняя формула показывает, как коэффициент мощности влияет на входную мощность трехфазного
электродвигателя (кВт). Обратите внимание, что чем ниже коэффициент мощности (больший сдвиг фазы ток-напряжение VA), тем меньше входная мощность при данном входном токе и напряжении.
Где:
Pi = VxIxPF(3) 0.5 /1,000
Pi= трехфазный вход кВт
V= среднеквадратичное напряжение (среднее от 3 фаз)
I= среднеквадратичное значение силы тока в амперах (берется от 3 фаз)
PF= коэффициент мощности в виде дроби
Хотя коэффициент мощности не влияет напрямую на КПД электродвигателя, он оказывает влияние на потери в сети, как это упоминалось выше. Однако, есть способы увеличения PF (коэффициента мощности), а именно:
Пусковые конденсаторы электродвигателей являются одним из наиболее поппулярных способов увеличения коэффициента мощности и имеют следующий список преимуществ:
Более высокое напряжение
Другим способом повышения КПД электродвигателя является повышение рабочего напряжения. Чем выше напряжение, тем ниже ток и, тем самым будут ниже потери в сети. Однако, высокое напряжение приведет к увеличению цены частотно-регулируемого привода и сделает работу более опасной.
Выводы
Таким образом, когда вы пытаетесь сократить энергопотребление насосных систем не забывайте о
КДП электродвигателя и факторах, перечисленных выше, которые на него влияют.
Частота вращения: формула
При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.
Синхронные и асинхронные электромашины
Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.
Синхронная скорость
Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.
Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.
Скольжение
В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:
Формула расчёта скорости асинхронного двигателя
Такие устройства есть двух типов:
Регулировка частоты вращения
В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:
Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.
Двигатели постоянного тока
Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.
Номинальная скорость вращения
Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:
Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.
Формула расчёта числа оборотов двигателя постоянного тока
Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.
Регулировка скорости
Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:
Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.
Видео
Является ли номинальная скорость асинхронного двигателя синхронной скоростью?
Blue7
Я спрашиваю, потому что пример вопроса и ответа, который я видел, говорит следующее:
Q: Оцените количество полюсов, которые имеет описанный выше двигатель
A: формула для синхронной скорости n = 120f / p
ближайшая синхронная скорость для данного ротора 1500 об / мин
Я предполагаю причину, по которой они округлились с 1460 до 1500, потому что число полюсов должно быть целым числом.
Итак, когда вы видите двигатель с номинальной скоростью в оборотах в минуту, что на самом деле означает это значение? И как это связано с синхронной скоростью (как в моем примере вопроса)?
Рассел МакМахон
Рассел МакМахон
WalyKu
Здесь вы видите асинхронный (асинхронный) двигатель. Отличие от синхронного заключается в том, что ротор обычно представляет собой клетку (sqirrel) и немного железа.
Для синхронного двигателя ротор имеет либо магнит, либо имеет геометрически строго определенные (заметные) полюса и промежутки между полюсами. Иногда это имеет оба!
Теперь, почему один синхронный, а другой асинхронный?
- Синхронный двигатель имеет постоянное возбуждение в роторе (или имеет постоянную разницу между индуктивностями). Поэтому поле вращается синхронно с ротором.
Скорость вращения рассчитывается из разности частот потока статора и ротора.
Читайте статьи в википедии или гугл асинхронные и синхронные моторы.
Ли Аунг Йип
Асинхронный двигатель никогда не вращается с синхронной скоростью.
Двигатель, вращающийся с постоянной скоростью, должен создавать достаточный ускоряющий момент, чтобы преодолеть замедляющий момент нагрузки. Поскольку асинхронный двигатель должен проскальзывать для обеспечения крутящего момента, скорость при полной нагрузке всегда будет меньше синхронной скорости.
Даже ненагруженный двигатель, на валу которого ничего нет, все еще имеет замедляющий момент из-за трения подшипников и так далее.
Номинальная скорость — это скорость двигателя при номинальной выходной (валовой) мощности.
Скорость холостого хода — это скорость двигателя без нагрузки на вал. Обратите внимание, что подшипники двигателя по-прежнему создают номинальную нагрузку из-за трения.
Синхронная скорость — это скорость, на которой вращался бы двигатель, если бы он имел абсолютно нулевую нагрузку (подшипники качения и никаких других потерь).
Для справки приведен типичный график характеристик двигателя.
Обратите внимание на синхронную скорость 3000 об / мин, скорость без нагрузки также около 3000 об / мин и скорость полной нагрузки 2932 об / мин.
ГЛАВА 5. Машины переменного тока.
Электрические машины переменного тока делятся на два основных типа: синхронные машины и асинхронные машины. И в том и другом случае в машинах переменного тока используется вращающееся магнитное поле.
В синхронных машинах скорость вращения ротора совпадает со скоростью вращения поля. В асинхронных машинах скорость вращения ротора несколько меньше скорости вращения поля.
Во всех машинах переменного тока используется вращающееся магнитное поле. Для получения вращающегося поля можно использовать двухфазную систему токов:
При протекании двух токов (I1, I2) по двум рамкам плоскости которых взаимно перпендикулярны возникает вращающееся магнитное поле величиной
Наиболее эффективно для создания вращающегося магнитного поля использовать трехфазную систему токов
5.1 Устройство асинхронного двигателя
Асинхронный двигатель состоит из двух основных частей:
Статор представляет собой полый металлический цилиндр, собранный из тонких пластин для уменьшения потерь в «стали». На внутренней поверхности цилиндра имеются пазы, в которых располагаются обмотки статора. Обмотки статора включаются либо звездой, либо треугольником в зависимости от напряжения, подводимого к статору ( 380 /220).
Ротор цилиндрической формы состоит из пластин электротехнической стали. На его внешней поверхности имеются пазы, в которых расположена обмотка ротора. Существует два типа обмоток ротора:
1)Короткозамкнутая обмотка состоит из стержней, расположенных в пазах ротора, замкнутых на его торцах двумя металлическими кольцами.
2) Фазная обмотка. На роторе с фазной обмоткой располагаются три обмотки, находящиеся в пазах ротора. Концы обмоток присоединяются к трем контактным кольцам, расположенным на валу ротора. Для создания тока в обмотках к кольцам прижаты графитовые щетки, соединенные со внешней электрической схемой, состоящей, как правило, из трех реостатов.
5.2 Принцип действия асинхронного двигателя.
При включении в сеть обмотки статора возникает трехфазная система токов, создающая вращающееся магнитное поле.
2. Вращающееся магнитное поле создает в обмотке ротора переменную ЭДС, которая будет максимальна при покоящемся роторе. Возникающая в роторе ЭДС создает в обмотке ротора значительные токи, которые порождают магнитное поле, неподвижное в начальный момент времени.
3. При взаимодействии вращающегося поля статора и неподвижного поля ротора возникают силы взаимодействия, а следовательно, крутящий момент. Под действием крутящего момента ротор приводится во вращение. При увеличении скорости вращения ротора уменьшается скорость пересечения силовыми линиями магнитного поля обмотки ротора, что приводит к уменьшению ЭДС, а следовательно, тока и крутящего момента. Поэтому ротор при вращении достигает скорости несколько меньшей скорости вращения поля.
4. При увеличении тормозного момента, действующего на ротор, уменьшается число оборотов, что приводит к увеличению ЭДС, возникающей в обмотке ротора, магнитного поля ротора, что вызывает увеличение крутящего момента при любой постоянной скорости вращения:
Обозначим: n1 — cкорость вращения поля, n2 — cкорость вращения ротора, s — скольжение (проскальзывание):
        (5.2)
6. При неподвижном роторе частота индуктируемой в его обмотке ЭДС равна частоте тока в сети f1=50 Гц.
>При увеличении скорости вращения ротора относительная скорость поля и ротора уменьшается, что приводит к уменьшению частоты ЭДС, возникающей в роторе: f2 =S f1 , где f2 — частота ЭДС возникающей в роторе, f1 — частота сети, s — скольжение.
Для практических применений асинхронных двигателей большое значение имеет зависимость частоты вращения от тормозного момента Мторм, которая называется механической характеристикой.
Одним из недостатков асинхронного двигателя является значительный пусковой ток. Для его уменьшения используются следующие способы:
1) Использование двигателя с фазным ротором имеющим на роторе три обмотки, концы которой, соединяются с контактными кольцами, с которыми соприкасаются графитовые щетки, связанные с реостатами:
В момент пуска сопротивление реостатов устанавливают максимальным, что приводит к значительному уменьшению тока в обмотках ротора, а, следовательно, тока потребляемого двигателем.
2) Первоначальное соединение обмоток двигателя звездой, а затем переключение их после пуска на соединение треугольником. В этом случае пусковые токи уменьшаются в три раза.
Еще одним недостатком асинхронных двигателей является невозможность плавного изменения их скорости вращения, которая определяется скоростью вращения магнитного поля и зависит от частоты тока и от числа пар полюсов обмотки статора.
Рабочие характеристики асинхронного двигателя приведены на рис. 5.3а. Они получены при номинальной частоте сети и номинальном напряжения питания U 1
Важным параметром асинхронных двигателей является cos j где j — фазовый сдвиг между напряжением U 1 приложенным к статору и током I 1 возникающим в этих обмотках. Этот фазовый сдвиг растет с ростом нагрузки, достигая максимума при номинальной нагрузки, а затем несколько уменьшается.
5.3 Однофазный асинхронный двигатель
На статоре размещается одна, рабочая, обмотка, которая питается переменным током, и которая создает пульсирующее магнитное поле. Подобное пульсирующее поле можно представить в виде двух вращающихся в противоположном направлении магнитных потоков и
(рис. 5.3б). При неподвижном роторе возникают два крутящих момента, одинаковые по величине и противоположно направленные, поэтому результирующий крутящий момент равен нулю. При предварительной раскрутке ротора в нем будет возбуждаться две ЭДС. Одна ЭДС будет возбуждаться тем магнитным потоком, который следует за ротором, а другая противоположным.
Частота одной ЭДС- мала (
1ГЦ), а частота другой ЭДС- велика(
100 ГЦ). Поэтому индуктивное сопротивление
ХL= L (5.3)
в первом случае будет очень мало. Это, в свою очередь, порождает значительный ток при малых сопротивлениях, а следовательно, создает максимальный крутящий момент действующий в сторону предварительной раскрутки.
5.4 Синхронный генератор.
Статор машины состоит из трех обмоток, которые располагаются точно также как на статоре трехфазного асинхронного двигателя. В обмотках статора создается трехфазная ЭДС, с помощью ротора. Для этой цели ротор должен обладать постоянным магнитным полем, для чего на роторе располагаются обмотка, концы которой присоединяются к двум контактным кольцам, располагающимся на роторе: с кольцами соприкасаются графитовые щетки к которым подключается источник постоянного тока (рис.5.5). Подобная обмотка ротора носит название обмотки возбуждения. При вращении ротора в статоре возбуждается трехфазная переменная ЭДС, которая пропорциональна величине магнитного потока Ф, создаваемого ротором и пропорциональна числу оборотов п ротора.
Синхронные генераторы широко распространены и используются на электростанциях для получения переменного тока промышленной частоты, а также для получения постоянного напряжения на автомобилях, тракторах, мотоциклах и т.п. Для этого они снабжаются встроенными трехфазными выпрямителями.
5.5. Синхронный двигатель.
Статор подобного двигателя устроен точно также как и статор трехфазного асинхронного двигателя (три обмотки питаются трехфазным током) и создает вращающееся магнитное поле.
В качестве ротора используется электромагнит, поле которого создается постоянным током, который подводится к обмотке с помощью двух контактных колец и щеток (аналогично ротору синхронного генератора).
Взаимодействие вращающегося магнитного поля статора и постоянного магнитного поля ротора приводит к появлению крутящего момента.
Таким образом, скорость вращения ротора соответствует скорости вращения магнитного поля, что приводит к появлению жесткой механической характеристики (т.е. независимости числа оборотов ротора от тормозного момента).
Основным недостатком синхронного двигателя является сложность пуска: для пуска нужно раскрутить ротор в сторону вращения магнитного поля создаваемого статором. Для этой цели наиболее часто используют короткозамкнутую обмотку, которая дополнительно располагается на роторе и поэтому в момент пуска двигатель работает как асинхронный. Когда скорость ротора приближается к скорости вращения поля, ротор входит в синхронизм и далее двигатель работает как синхронный.
Сайт ориентирован на работу в INTERNET EXPLORER 4.0 и выше.
Разрешение 800х600 и больше. Используйте кнопку F11