Что такое нулевая функция
Нули функции
Что такое нули функции? Как определить нули функции аналитически и по графику?
Нули функции — это значения аргумента, при которых функция равна нулю.
Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.
Если уравнение не имеет корней, нулей у функции нет.
1) Найти нули линейной функции y=3x+15.
Чтобы найти нули функции, решим уравнение 3x+15 =0.
2) Найти нули квадратичной функции f(x)=x²-7x+12.
Для нахождения нулей функции решим квадратное уравнение
Его корни x1=3 и x2=4 являются нулями данной функции.
3)Найти нули функции
Дробь имеет смысл, если знаменатель отличен от нуля. Следовательно, x²-1≠0, x² ≠ 1,x ≠±1. То есть область определения данной функции (ОДЗ)
Из корней уравнения x²+5x+4=0 x1=-1 x2=-4 в область определения входит только x=-4.
Чтобы найти нули функции, заданной графически, надо найти точки пересечения графика функции с осью абсцисс.
Если график не пересекает ось Ox, функция не имеет нулей.
функция, график которой изображен на рисунке,имеет четыре нуля —
В алгебре задача нахождения нулей функции встречается как в виде самостоятельного задания, так и при решения других задач, например, при исследовании функции, решении неравенств и т.д.
Нули функции
Прежде чем перейти к изучению темы «Нули функции» внимательно изучите уроки
«Что такое функция в математике» и «Как решать задачи на функцию».
Нули функции — это
значения « x » (аргумента функции),
при которых « y = 0 ».
В заданиях «Найдите нули функции» чаще всего сама функция задана через формулу (аналитически). Разберем алгоритм решения подобных задач.
Как найти нули функции, заданной формулой
По традиции разберемся на примере.
№ 260 (1) Мерзляк 9 класс
Найдите нули функции:
Подставим вместо значения функции « f(x) » ноль.
Решаем полученное линейное уравнение и записываем полученный ответ
для « x ».
Перенесем неизвестное « 0,2x » из правой части уравнения в левую с противоположным знаком.
Переведем десятичную дробь « 0,2 » в обыкновненную для упрощения дальнейших расчетов.
2 |
10 |
· x = −3 | · 10
2 |
10 |
· x · 10 = −3 · 10
2 · 10 |
10 |
· x = −30
Ответ: x = −15 является нулем
функции f(x) = 0,2x + 3
№ 260 (5) Мерзляк 9 класс
Найдите нули функции:
Вместо « f(x) » подставим ноль.
В левой части полученного уравнения у нас два множителя:
« x » и « (x 2 − 4) ». Результат их умножения равен нулю.
Это возможно, когда любой из множителей равен нулю. Поэтому рассмотрим оба варианта: когда множитель « x » равен нулю и когда множитель « (x 2 − 4) » равен нулю.
Решаем квадратное уравнение
« x 2 − 4 = 0 ». Используем формулу для решения квадратного уравнения с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
0 ± √ 0 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Запишем все полученные корни уравнений в ответ в порядке возрастания. Они будут являться нулями функции.
Ответ: x = −2; x = 0; x = 2 являются нулями функции f(x) = x 3 − 4x
№ 260 (4) Мерзляк 9 класс
Найдите нули функции:
h(x) =
x 2 − x − 6 |
x + 3 |
Подставим вместо « h(x) » ноль.
0 =
x 2 − x − 6 |
x + 3 |
Перенесем правую часть
x 2 − x − 6 |
x + 3 |
в левую, изменив ее знак на минус.
− (
x 2 − x − 6 |
x + 3 |
) = 0 | · (−1)
x 2 − x − 6 |
x + 3 |
= 0
Единственный вариант, когда дробь будет равна нулю, только если
ее числитель « x 2 − x − 6 » будет равен нулю. Знаменатель « x + 3 » не может быть равен нулю, так как на ноль делить нельзя.
Решим полученное квадратное уравнение через формулу с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−1) ± √ (−1) 2 − 4 · 1 · (−6) |
2 · 1 |
x1;2 =
1 ± √ 1 + 24 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 3 | x2 = −2 |
№ 261 (3) Мерзляк 9 класс
Найдите нули функции:
Заменим « f(x) » на ноль.
Единственное число, квадратный корень которого равен нулю — это сам ноль. Поэтому, квадратный корень
« √ x 2 − 4 = 0 » будет равен нулю, когда его подкоренное выражение « x 2 − 4 » будет равно нулю.
Осталось решить полученное квадратное уравнение, чтобы найти нули функции
« f(x) = √ x 2 − 4 ».
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−0) ± √ (−0) 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Ответ: x = −2; x = 2 являются нулями функции f(x) = √ x 2 − 4
Как найти нули функции на графике функции
Графически нули функции — это точки пересечения графика функции
с осью « Ox » (осью абсцисс).
По определению нули функции — это значения « x »,
при которых « y = 0 ». Другими словами, у точек графика функции, которые являются нулями функции,
координата « x » равна нулю.
Чтобы найти нули функции на графике нам остается, только найти, какая у них координата по оси « Ox ».
Рассмотрим на примере.
№ 255 (1) Мерзляк 9 класс
На рисунке ниже изображен график функции « y = f(x) », определенной на множестве действительных чисел. Используя график, найдите нули функции.
Отметим на графике функции его точки пересечения с осью « Ox ».
Точки « (·)А » и « (·)B » — нули функции. Теперь определим, чему равны их координаты по оси « Ox ».
На графике видно, что у точки « (·)А » координата « x » равна « 0 », а у точки « (·)B » координата « x » равна « 2 ».
Запишем полученные значения координат « x » в ответ.
Ответ: x = 0 ; x = 2 являются нулями функции.
Как найти нули функции, заданной таблицей
В некоторых заданиях, где требуется найти нули функции, сама функция задана не вполне привычно с помощью формулы, а с помощью таблицы. Поиск нулей в таких примерах является легкой задачей.
№ 1.83 (2) Кузнецова 9 класс
Найдите нули функции, заданной таблицей.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Вспомним определение нулей функции.
Нули функции — это
значения « x » в функции, при которых « y = 0 ».
Согласно определению нулей функции нам достаточно найти значения « x » в таблице,
где « y = 0 ». Выделим их цветом.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Остаётся только записать в ответ значения « x » из таблицы.
Ответ: x = 0; x = 3 являются нулями функции, заданной таблицей.
Как найти нули функции?
Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.
На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.
Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства
Остановимся подробнее на свойствах функций.
Нули функции
Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.
На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.Внимание!
Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.
График функции у=k/x выглядит следующим образом: По данному рисунку видно, что нулей функции не существует.Как найти нули функции?
Рассмотрим примеры нахождения нулей функции. Пример №1. Найти нули функции (если они существуют):
а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22
б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0.
Значит, нули функции это числа (-76) и 95.
Пример №2. Найти нули функции у=f(x) по заданному графику.
Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.
Промежутки знакопостоянства
Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.
Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).
Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.
Возрастание и убывание функции
Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.
Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Метод интервалов: примеры, решения
Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.
Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.
Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.
Алгоритм
Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f(x) или ≥). Здесь f(x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:
произведение линейных двучленов с коэффициентом 1 при переменной х;
произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.
Приведем несколько примеров таких неравенств:
Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:
Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.
При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.
Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.
Научные основы метода промежутков
Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a, b), на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (−∞, a) и (a, +∞).
Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.
Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (−∞, −1). Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t
Нуль функции
Нуль функции в математике — элемент из области определения функции, в котором она принимает нулевое значение. Например, для функции , заданной формулой
является нулём, поскольку
.
Нули функции также называются корнями функции.
Понятие нулей функции можно рассматривать для любых функций, область значений которых содержит нуль или нулевой элемент соответствующей алгебраической структуры.
Для функции действительного переменного нулями являются значения, в которых график функции пересекает ось абсцисс.
Нахождение нулей функции часто требует использования численных методов (к примеру, метод Ньютона, градиентные методы).
Одной из нерешённых математических проблем является нахождение нулей дзета-функции Римана.
Корень многочлена
Основная теорема алгебры утверждает, что каждый многочлен степени n имеет n комплексных корней, учитывая их кратность. Комплексные корни всегда входят сопряжёнными парами. Каждый многочлен нечётной степени имеет по крайней мере один действительный корень. Связь между корнями многочлена и его коэффициентами устанавливает теорема Виета.
См. также
Литература
Полезное
Смотреть что такое «Нуль функции» в других словарях:
Нуль функции — точка, где заданная функция f (z) обращается в нуль; таким образом, Н. ф. f (z) это то же самое, что и корни уравнения f (z) = 0. Например, точки 0, π, π, 2π, 2π. суть нули функции sinz. Нули аналитической функции (См. Аналитические… … Большая советская энциклопедия
нуль-функция — нуль функция, нуль функции … Орфографический словарь-справочник
Нуль (комплексный анализ) — У этого термина существуют и другие значения, см. Нуль. Необходимо перенести содержимое этой статьи в статью «Нуль функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот … Википедия
НУЛЬ-ЗАРЯД — в квантовой теории поля принятое (жаргонное) название для свойства обращения в нуль фактора перенормировки константысвязи где g0 затравочная константа связи из лагранжиана взаимодействия, физ. константа связи, одетая взаимодействием. Равенство Z … Физическая энциклопедия
Нуль-мутация н-аллель — Нуль мутация, н. аллель * нуль мутацыя, н. алель * null mutation or n. allel or silent a. мутация, ведущая к полной потере функции в той последовательности ДНК, в которой она произошла … Генетика. Энциклопедический словарь
НУЛЬ — 1) Число, обладающее тем свойством, что любое (действительное или комплексное) число при сложении с ним не меняется. Обозначается символом 0. Произведение любого числа на Н. равно Н.: Если произведение двух чисел равно Н., то один из сомножителей … Математическая энциклопедия
Неявные функции — функции, заданные соотношениями между независимыми переменными, не разрешенными относительно последних; эти соотношения являются одним из способов задания функции. Например, соотношение x2 + y2 1 = 0 задаёт Н. ф. … Большая советская энциклопедия
Построение графиков функций
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс: