Что такое общее сопротивление
Закон Ома и его применение
Несмотря на свою простоту, закон Ома является фундаментальным. Он позволяет рассчитывать параметры электрической цепи, обеспечивающих её работоспособность. Хотя этот закон и был выведен в начале 19 века, он активно применяется и сейчас. При его использовании важно понимать, какие физические процессы он отражает, как правильно их применять.
Первоначальная и современная формулировка
Этот, на первый взгляд, простой закон был сформулирован немецким физиком Георгом Омом в 1826 году. Соответствующую научную статью он опубликовал в следующем году.
Интересно отметить, что появление этой работы не вызвало ажиотажа. Научная общественность оценила открытие Ома лишь после публикации работ физика Пулье аналогичного содержания в 1830 году. В 1833 Ом получил степень доктора в Нюрнбергском университете. В 1872 году единица измерения сопротивления стала называться Омом. В самой простой форме закон для участка цепи звучит так:
Закон носит эмпирический характер, так как он выражает обобщенный анализ большого количества опытных данных.
Сейчас формула закона Ома для полной электрической цепи имеет следующий вид:
Закон Ома для полной цепи учитывает полное сопротивление, которое представляет собой сумму сопротивления цепи R и внутреннего сопротивления источника тока r.
Георг Ом первоначально сформулировал его по-другому. Закон Ома для замкнутой цепи выглядел так:
Как видно, закон Ома, применяемый для полной электрической цепи, в обоих вариантах имеет одинаковую формулировку.
Также применяется закон Ома в дифференциальной форме. В данном случае рассматриваются очень малые величины. Но это позволяет применять интегральное и дифференциальное исчисление для сложных случаев.
Практическое применение
В большинстве случаев внутреннее сопротивление источника тока считают относительно малым по сравнению с тем, которое есть в электрической цепи. В этом случае применяется закон Ома для замкнутой цепи в сокращенной формулировке: I = U / R.
Чтобы лучше понять, какие физические процессы происходят в электрической цепи, нужно учитывать следующее:
В электрической цепи используются резисторы в тех случаях, когда для работы прибора требуется строго определённое сопротивление. Если клеммы источника тока, говоря простыми словами, соединить напрямую, то сопротивление будет малым, а ток относительно большим. С одной стороны, большой ток в некоторых случаях способен расплавить провод, с другой он приводит к ускоренной разрядке батареи.
В веществе движение электронов не является свободным. Перемещаясь, частицы должны преодолевать сопротивление, расходуя на это свою энергию. Величина сопротивления зависит от конкретного материала. В проводниках электроны двигаются относительно легко. Через изоляторы ток пройти не может, за исключением тех случаев, когда подаётся настолько высокое напряжение, что такая ситуация создает пробой.
В полупроводниках происходят более сложные процессы, поскольку они отличаются жесткой кристаллической структурой. При наличии примесей определённого типа может возникать электронная или дырочная проводимость. Ток может представлять собой движение, как электронов, так и дырок.
Более точную характеристику сопротивления можно получить из следующей формулы:
С помощью удельного сопротивления можно охарактеризовать электрические свойства определённого вещества. Эта величина представляет собой сопротивление, которое имеет отрезок провода из данного материала длиной 1 м и площадью сечения 1 кв. мм.
Сопротивление источника тока
Закон Ома для полной электрической цепи и формулы для расчета ее параметров характеризируют не только ток, проходящий через цепь, но и тот, который существует внутри источника тока. Закон Ома для участка цепи не учитывает наличие этой величины.
Батарея аккумулятора обеспечивает перемещение электронов от положительной клеммы к отрицательной. Через электрическую цепь они постоянно движутся в противоположном направлении. Уменьшение их количества на отрицательной клемме и избыток на положительной постоянно компенсируются процессами, происходящими внутри устройства.
Такое движение электронов также является электрическим током. При этом частицам приходится преодолевать внутреннее сопротивление источника тока. При увеличении температуры сопротивление может меняться, характер изменения зависит от конкретного материала.
Эмпирический характер закона Ома
При изучении природы электричества путем научных исследований происходит формулировка тех или иных законов. Они отличаются межу собой не только своим содержанием, но и тем, как были выведены. Некоторые законы представляют собой следствие из более общих утверждений, другие являются удачной попыткой объяснить многократно наблюдаемые факты.
Закон Ома для однородного участка фактически является попыткой создать правило, которое соответствует большому количеству наблюдений и экспериментов. Его формулировка на протяжении веков подтверждалась на практике, приобретая силу фундаментального закона физики. Закон Ома, представленный в интегральной форме, даёт возможность производить расчёты для различных электрических цепей.
Использование для переменного тока
Как известно, в цепи переменного тока действует как активное, так и реактивное сопротивление. Первое из них совпадает с тем, как понимали эту величину во времена Георга Ома. Однако индуктивное и емкостное сопротивления также тормозят движение электронов. В этом случае применяется закон Ома для переменного тока.
Чтобы использовать данный закон в таких цепях, вместо омического сопротивления следует рассматривать полное, которое учитывает суммарное воздействие активной и реактивной составляющих сопротивления.
В представленной схеме полное сопротивление обозначается как Z. Омическое, индуктивное и емкостное — соответственно R, XL и XC. Закон Ома для цепи переменного тока учитывает все эти разновидности. Формула расчёта подразумевает, что сложение сопротивлений происходит по правилу векторов.
Для определения всех сопротивлений используют прямоугольный треугольник, один катет которого выражает активное сопротивление, а второй – реактивное. Последнее равно разнице индуктивного и емкостного сопротивлений. Определение полного осуществляется по теореме Пифагора, согласно которой длина гипотенузы равна корню квадратному от суммы квадратов катетов.
Применение на практике
Когда нужно работать с электрической цепью, важно знать напряжение, силу тока, сопротивление во всей цепи или на отдельных участках. Если известны две из этих величин, то с помощью закона Георга Ома можно узнать третью без проведения непосредственных измерений.
Иногда требуется использовать закон Ома для неоднородного участка цепи. В этом случае его разбивают на отдельные зоны и сначала проводят вычисления для них.
Поскольку от электрических параметров зависят тепловые или химические воздействия, применяя закон Ома можно рассчитать возможный эффект. В частности, знание таких особенностей позволяет избежать разрушительного эффекта слишком высокой силы тока.
Закон Ома может быть выражен в интегральной и дифференциальной формах. В первом случае речь идёт о традиционной формулировке, а его выражение в дифференциальной форме учитывает удельную проводимость – величину, обратную удельному сопротивлению.
В заключение следует сказать, что измерение сопротивления осуществляется с помощью специального прибора — омметра. Но в работающей цепи это сделать невозможно. Определить величину сопротивления без отключения цепи можно расчетным путем используя закон Ома и предварительно измерив напряжение и силу тока на нужном участке цепи.
Видео по теме
Как определить сопротивление цепи
Сопротивление – это физическая электротехническая величина, отражающая противодействие движению электрического тока в проводнике или в цепи. Впервые она была обоснована и закреплена в фундаментальной связи с напряжением и силой тока в законе Ома – немецкого физика, который изучал эту взаимосвязь. В честь него и названа единица измерения сопротивления – Ом. Часто при выполнении монтажа какой-либо электросети необходимо найти общее сопротивление цепи при различных способах подключения. О том, как это правильно сделать и расскажет этот материал.
Что такое общее сопротивление цепи
Если говорить простыми словами, общее сопротивление электрической цепи – это такое R, которое она оказывает на напряжение в ее проводниках и приборах. Существует два типа напряжения (исходя из силы тока) – постоянное и переменное. Так же и сопротивление делится на активное и реактивное, которое, в свою очередь, подразделяется на индуктивное и емкостное. Активный тип не зависит от частот сети. Также для него абсолютно не важно, какой ток протекает по проводникам. Реактивный же, наоборот, зависит от частоты, причем емкостная характеристика в конденсаторах и индуктивная в трансформаторах ведут себя по-разному.
Помимо сопротивления подключенных в сеть электроприборов, на общее состояние оказывают влияние даже промежуточные провода, также имеющие сопротивляемость напряжению.
Резистор – основной элемент сопротивляемости цепи
Как правильно найти и посчитать формулой сопротивление цепи
Сперва следует разобрать понятия и формулы. Индуктивный тип считается так: XL= ωL, где L – индуктивность цепи, а ω – круговая частота переменного тока, равная 2πf (f – частота переменного тока). Чем больше частота сети, тем большим R для нее становится какая-либо катушка индуктивности.
Емкостный тип можно рассчитать по формуле: Xc = 1/ ωC, где С – емкость радиоэлемента. Здесь все наоборот. Если происходит увеличение частоты, то сопротивляемость конденсатора напряжению уменьшается. Из этого исходит то, что для сети постоянного тока конденсатор – бесконечно большое R.
Высчитать характеристику можно и с помощи других величин
Но не только вид сопротивления и радиоэлементы, обеспечивающие его, влияют на общее значение цепи. Особую роль играет также и способ соединения элементов в электроцепь. Существует два варианта:
В последовательном подключении
Это самый простой тип для практического и теоретического рассмотрения. В нем элементы резисторного типа соединяются, очевидно, последовательно, образуя подобие «змейки» после чего электрическая цепь замыкается. Посчитать общее значение в таком случае довольно просто: требуется последовательно сложить все значения, выдаваемые каждым из резисторов. Например, если подключено 5 резисторов по 5 Ом каждый, то общий параметр будет равен 5 на 5 – 25 Ом.
Формула последовательной сети
В параллельном подключении
Немного сложнее все устроено в параллельных сетях. Если при последовательном способе току нужно пройти все резисторы, то тут он вправе выбрать любой. На самом деле он просто будет разделен между ними. Суть в том, что есть характеристика, схожая для всех радиоэлементов, например, величина в 5 Ом означает, что для нахождения общего R необходимо разделить его на количество всех подключенных резисторов: 5/5 = 1 Ом.
Важно! Из-за того, что напряжение на параллельных участках одинаково, а токи складываются, то есть сумма токов в участках равна неразветвленному току, то Rобщ будет высчитываться формуле: 1/R = 1/R1 + 1/R2 + … + 1/Rn.
Как определить формулой общее сопротивление цепи
Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.
Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.
Таблица удельной величины для различных проводников
Онлайн-калькулятор расчета сопротивление цепи
Для того чтобы сэкономить свое время и не заниматься скучными пересчетами, рекомендуется пользоваться калькуляторами по расчету сопротивления и многих других величин в режиме онлайн. Большинство из них бесплатные:
В статье подробно рассказано, как вычислить общее сопротивление цепи. При разных типах подключения элементов она считается по-разному, но благодаря давно выведенным формулам в любом случае нет ничего сложного.
Последовательное и параллельное соединение
Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.
Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м 2
l – длина проводника, м
Более подробно об этом я писал здесь.
Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.
Последовательное соединение проводников
Сопротивление при последовательном соединении проводников
Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.
последовательное соединение резисторов
Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.
Получается, можно записать, что
формула при последовательном соединении резисторов
Пример
У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.
Решение
показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:
Сила тока через последовательное соединение проводников
Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.
сила тока через последовательное соединение проводников
Напряжение при последовательном соединении проводников
Давайте еще раз рассмотрим цепь с тремя резисторами
Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?
Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.
Пусть у нас будет цепь с такими параметрами.
Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.
Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.
Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.
Мы получили самый простой делитель напряжения.
Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
параллельное соединение резисторов
Ну что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
Если бы у нас еще были резисторы, соединенные параллельно, то для них
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
Если бы у нас еще были резисторы, соединенные параллельно, то для них
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
2-ой способ найти I
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.