Что такое отрасль электротехника сфера применения
Большое значение электротехники во всех областях деятельности человека объясняется преимуществами электрической энергии перед другими видами энергии, а именно:
♦ электрическую энергию легко преобразовать в другие виды энергии (механическую, тепловую, световую, химическую и др.), и наоборот, в электрическую энергию легко преобразуются любые другие виды энергии;
♦ электрическую энергию можно передавать практически на любые расстояния. Это дает возможность строить электростанции в местах, где имеются природные энергетические ресурсы, и передавать электрическую энергию в места, где расположены источники промышленного сырья, но нет местной энергетической базы:
электрическую энергию удобно дробить на любые части в электрических цепях (мощность приемников электроэнергии может быть от долей ватта до тысяч киловатт);
♦ процессы получения, передачи и потребления электроэнергии легко поддаются автоматизации;
♦ процессы, в которых используется электрическая энергия, допускают простое управление (нажатие кнопки, выключателя и т. д.).
Особо следует отметить существенное удобство применения электрической энергии при автоматизации производственных процессов, благодаря точности и чувствительности электрических методов контроля и управления. Использование электрической энергии позволило повысить производительность труда во всех областях деятельности человека, автоматизировать почти все технологические процессы в промышленности, на транспорте, в сельском хозяйстве и в быту, а также создать комфорт в производственных и жилых помещениях. Кроме того, электрическую энергию широко используют в технологических установках для нагрева изделий, плавления металлов, сварки, электролиза, получения плазмы, получения новых материалов с помощью электрохимии, очистки материалов и газов и т. д.
В настоящее время электрическая энергия является практически единственным видом энергии для искусственного освещения. Можно сказать, что без электрической энергии невозможна нормальная жизнь современного общества.
Единственным недостатком электрической энергии является невозможность запасать ее в больших количествах и сохранять эти запасы в течение длительного времени. Запасы электрической энергии в аккумуляторах, гальванических элементах и кон-
денсаторах достаточны лишь для работы сравнительно маломощных устройств, причем сроки ее сохранения ограничены. Поэтому электрическая энергия должна быть произведена тогда, когда ее требует потребитель, и в том количестве, в котором она ему необходима.
Непрерывное расширение области применения электрической энергии влечет за собой глубокое внедрение электротехники во все отрасли промышленности, сельского хозяйства и быта, а это требует дальнейшего подъема электровооруженности труда, широкой автоматизации производственных процессов и использования автоматизированных систем управления.
Эти обстоятельства требуют обеспечения такой профессиональной подготовки специалистов, при которой они будут располагать системой знаний, умений и навыков в актуальных для них областях электротехники.
Применение электротехники
Чтo тaкoe электротехника
Бoльшoe знaчeниe электротехники вo всex oблaстяx дeятeльнoсти чeлoвeкa oбъясняeтся прeимущeствaми элeктричeскoй энeргии пeрeд другими видaми энeргии, a имeннo:
§ элeктричeскую энeргию лeгкo прeoбрaзoвaть в другиe виды энeргии (мexaничeскую, тeплoвую, свeтoвую, xимичeскую и др.), и нaoбoрoт, в элeктричeскую энeргию лeгкo прeoбрaзуются любыe другиe виды энeргии;
§ элeктричeскую энeргию мoжнo пeрeдaвaть прaктичeски нa любыe рaсстoяния, чем и занимается электротехника. Этo дaeт вoзмoжнoсть стрoить элeктрoстaнции в мeстax, гдe имeются прирoдныe энeргeтичeскиe рeсурсы, и пeрeдaвaть элeктричeскую энeргию в мeстa, гдe рaспoлoжeны истoчники прoмышлeннoгo сырья, нo нeт мeстнoй энeргeтичeскoй бaзы;
§ элeктричeскую энeргию удoбнo дрoбить нa любыe чaсти в элeктричeскиx цeпяx (мoщнoсть приeмникoв элeктрoэнeргии мoжeт быть oт дoлeй вaттa дo тысяч килoвaтт);
§ прoцeссы пoлучeния, пeрeдaчи и пoтрeблeния элeктрoэнeргии лeгкo пoддaются aвтoмaтизaции в электротехнике;
§ прoцeссы, в кoтoрыx испoльзуeтся элeктричeскaя энeргия, дoпускaют прoстoe упрaвлeниe (нaжaтиe кнoпки, выключaтeля и т. д.)
Применение электротехники
В электротехнике осoбo слeдуeт oтмeтить сущeствeннoe удoбствo примeнeния элeктричeскoй энeргии при aвтoмaтизaции прoизвoдствeнныx прoцeссoв, блaгoдaря тoчнoсти и чувствитeльнoсти элeктричeскиx мeтoдoв кoнтрoля и упрaвлeния. Испoльзoвaниe элeктричeскoй энeргии пoзвoлилo пoвысить прoизвoдитeльнoсть трудa вo всex oблaстяx дeятeльнoсти чeлoвeкa, электротехника aвтoмaтизирoвaла пoчти всe тexнoлoгичeскиe прoцeссы в прoмышлeннoсти, нa трaнспoртe, в сeльскoм xoзяйствe и в быту, a тaкжe сoздaла кoмфoрт в прoизвoдствeнныx и жилыx пoмeщeнияx. Крoмe тoгo, электротехника широко использует элeктричeскую энeргию в тexнoлoгичeскиx устaнoвкax для нaгрeвa издeлий, плaвлeния мeтaллoв, свaрки, элeктрoлизa, пoлучeния плaзмы, пoлучeния нoвыx мaтeриaлoв с пoмoщью элeктрoxимии, oчистки мaтeриaлoв и гaзoв и т. д.
В нaстoящee врeмя элeктричeскaя энeргия являeтся прaктичeски eдинствeнным видoм энeргии для искусствeннoгo oсвeщeния. Мoжнo скaзaть, чтo бeз элeктричeскoй энeргии нeвoзмoжнa нoрмaльнaя жизнь сoврeмeннoгo oбщeствa.
Электротехника
Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии.
Электротехника выделилась в самостоятельную науку из физики в конце XIX века.
Содержание
История
Разделы
Электротехника имеет множество разделов, самые важные из которых описаны ниже. Хотя инженеры работают каждый в своей области, но многие из них имеют дело с комбинацией из нескольких наук.
Электроэнергетика
Электроэнергетика — наука о выработке, передаче и потреблении электроэнергии, а также о разработке устройств для этих целей. К таким устройствам относят: трансформаторы, электрические генераторы, ТЭНы, электродвигатели, низковольтную аппаратуру и электронику для управления силовыми приводами. Многие государства мира имеют электрическую сеть, называемую электроэнергетической системой, которая соединяет множество генераторов с потребителями энергии. Потребители получают энергию из сети, не тратя ресурсы на выработку своей собственной энергии. Энергетики работают как над проектированием и обслуживанием сети, так и над энергетическими системами, присоединёнными к сети. Такие системы называются внутрисетевыми и могут как поставлять энергию в сеть, так и потреблять её. Энергетики работают также и над системами не присоединёнными к сети, называемыми внесетевыми, которые в некоторых случаях являются более предпочтительными, чем внутрисетевые системы. Имеется перспектива создания энергетических систем, контролируемых со спутника, имеющих обратную связь в реальном времени, что позволит избежать скачков напряжения и предотвратить нарушения энергоснабжения.
Системы автоматического управления
Задачами автоматических систем управления (и автоматизации в целом) является моделирование различных динамических систем и разработка систем управления, которые заставляют работать динамические системы нужным образом. Для создания таких устройств могут использоваться электрические схемы, процессоры цифровой обработки сигналов, микроконтроллеры и программируемые логические контроллеры. Системы управления имеют широкую область применения от систем, встраиваемых в энергетические установки (например, на коммерческих авиалайнерах), автоматов постоянной скорости (имеющихся во множестве современных автомобилей) и ЧПУ в станках до систем управления на базе промышленных ПК в автоматизации промышленного производства.
Инженеры часто используют обратную связь при проектировании систем управления. Например в автомобиле с автоматом постоянной скорости скорость транспортного средства постоянно отслеживается и данные передаются системе, которая соответственно регулирует выходную мощность двигателя. Если имеется стандартная система обратной связи, можно использовать теорию управления для определения того, как система должна реагировать на поступающую информацию.
Микроэлектроника
Микроэлектроника занимается разработкой и изготовлением очень малых компонентов электронных цепей для использования в интегральных схемах или, в некоторых случаях, для использования в качестве основных электронных компонентов. Самыми распространенными микроэлектронными компонентами являются полупроводниковые транзисторы, хотя все основные электронные компоненты (резисторы, конденсаторы, индукторы) могут быть созданы на микроскопическом уровне.
Микроэлектронные компоненты создаются химическим изготовлением пластин из полупроводников, например, кремния (при более высоких частотах — полупроводниковых соединений, таких как арсенид галлия, фосфид индия, нитрид галлия), чтобы получить желаемую передачу заряда и управлять током. Микроэлектроника затрагивает существенную часть химии и материаловедения, и требует от инженера-электроника, работающего в данной области, хороших практических знаний квантовой механики.
Значение слова «электротехника»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
В настоящее время электротехника как наука включает в себя следующие научные специальности : электромеханика, ТОЭ, светотехника, силовая электроника. Кроме того, к отраслям электротехники часто относят энергетику, хотя легитимная классификация рассматривает энергетику как отдельную техническую науку. Основное отличие электротехники от слаботочной электроники заключается в том, что электротехника изучает проблемы, связанные с силовыми крупногабаритными электронными компонентами: линии электропередачи, электрические приводы, в то время как в электронике основными компонентами являются компьютеры и другие устройства на базе интегральных схем, а также сами интегральные схемы. В другом смысле, в электротехнике основной задачей является передача электрической энергии, а в электронике — информации.
ЭЛЕКТРОТЕ’ХНИКА, и, мн. нет, ж. 1. Наука о применении электричества для различных практических целей. Курс электротехники. Э. сильных токов. Э. слабых токов. 2. Отрасль промышленности, производящая оборудование для практического применения электрической энергии (тех.).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
электроте́хника
1. научная дисциплина, изучающая процессы и явления, связанные с практическим использованием электроэнергии
2. учебный предмет, содержащий теоретические основы данной науки
3. разг. учебник, излагающий содержание данного учебного предмета
4. собир. приспособления, приборы, машины и т. п., использующие в своей работе электроэнергию
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова акцепт (существительное):
Что такое отрасль электротехника сфера применения
Фундаментальная
Теоретическиеисследования
—> Теоретическиеисследования
Экспериментально-научные исследования
—> Экспериментально-научные исследования
Прикладная
Криминалистика
—> Криминалистика
Военное дело
—> Военное дело
Прикладная физикаи математика
—> Прикладная физикаи математика
Психология
—> Психология
Прикладная механика
—> Прикладная механика
Инновации
Робототехника
Эргономика
—> Эргономика
Разработки
Техническая
Авиация и космонавтика
—> Авиация и космонавтика
Инженерия
—> Инженерия
Электротехника
—> Электротехника
Энергетика
—> Энергетика
Естественная
Астрономия
—> Астрономия
Биология
—> Биология
Психология
—> Психология
Химия
—> Химия
Физика
—> Физика
Медицина
—> Медицина
Общественная
История
—> История
Антропология
—> Антропология
Правовая
—> Правовая
Культурология
—> Культурология
Экономика
—> Экономика
Все материалы
Видеоматериалы |
Спонсор |
Центр боевых искусств |
Агни Йога |
Электротехника — отрасль науки и техники Электротехника — отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, обработки материалов, передачи информации и другого, и охватывающая вопросы получения преобразования и использования электроэнергии в практической деятельности человека. Немного истории В XIX веке электротехника выделилась из физики в самостоятельную науку. Над закладкой её фундамента трудилась целая плеяда ученых и изобретателей. Датчанин Х. Эрстед, француз А. Ампер, немцы Г. Ом и Г. Герц, англичане М. Фарадей и Д. Максвел, американцы Д. Генри и Т. Эдисон — эти имена мы встречаем в учебниках физики (в честь некоторых из них названы единицы электрических величин). XIX век щедро одарил человечество изобретениями и открытиями в области технических средств коммуникации. В 1832 году член-корреспондент Петербургской Академии наук Павел Львович Шиллинг в присутствии императора продемонстрировал работу изобретённого им электромагнитного телеграфа, чем положил начало проводной связи. В 1876 году Александр Белл изобрёл телефон. В 1859 году братья Луи и Огюст Люмьеры дали первый киносеанс в Париже, а Александр Степанович Попов в Петербурге публично демонстрировал передачу и приём электрических сигналов по радио. Не зря XIX век назвали веком электричества. В 1867 году Зеноб Грамм (Бельгия) построил надёжный и удобный в эксплуатации электромашинный генератор, позволяющий получать дешевую электроэнергию, и химические источники отошли на второй план. А в 1878 году на улицах Парижа вспыхнул ослепительный «русский свет» — дуговые лампы конструкции Павла Николаевича Яблочкова. Закачались стрелки на приборах первых электростанций. Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую… Рождение электротехники начинается с изготовления первых гальванических элементов –химических источников электрического тока. Связывают его с именем Александра Вольты. Однако рассказывают, что, раскапывая египетские древности, археологи обратили внимание на странные сосуды из обожженной глины с изъеденными металлическими пластинами в них. Что это. Многое в окаменевших остатках ушедших, канувших в Лету цивилизаций, до сих опор не понятно людям. Нелегко восстановить образ минувшего, тем более что часто он оказывается не таким уж примитивным, как думается. «А уж не банки ли это химических элементов?» — пришла кому-то в голову сумасшедшая мысль. Впрочем, так ли она безумна? Ведь получение постоянного электрического тока химическим путём действительно очень просто. Солёной воды на Земле хоть отбавляй, как и необходимых металлов — цинка и меди. Вместо меди лучше применять серебро и золото… Первые элементы имели один общий недостаток. Они давали ток лишь первые несколько минут, затем требовали отдыха. Почему это происходило, ни кто не понимал. Но с такими быстро утомляющимися элементами нечего было, и думать затевать какую-то промышленность. И поэтому все усилия исследователей сконцентрировались на проблеме утомляемости. Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией и объявили ему войну. Примерно в начале 30-х годов прошлого столетия англичане Кемп и Стерджен выяснили, что цинковая пластина, покрытая амальгамой — действует слабее чем пластина из чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не даёт тока. Это стало существенным достижением. Следом за ним французский учёный, основатель учёной династии Беккерель высказал мысль, что хорошо бы попробовать опускать пластины в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась, но как её реализовать? Изобретатели всех стран принялись за опыты. На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниеля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещён цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убыль меди… Поляризация была побеждена! Однако у элемента Даниеля нашлись другие недостатки. Так, он имел электродвижущую силу. Часть электрической энергии тратилось внутри самого элемента на разложение медного купороса. Соотечественник Даниеля Вильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъела медный электрод, заменил медь платиной. Всё получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина дорогой металл. Правда, Грове и его последователи делали электроды из тончайших листков, согнутых для прочности буквой S. Несмотря на высокую стоимость, элементы Грове нашли широкое применение в лабораториях многих стран мира. Может показаться странным, что никто не додумался заменить платину древесным углём. Принципиальная возможность такой замены была уже известна. Но надо учитывать тот уровень техники, ни кто не умел делать плотных углей. А обычный древесный уголь был слишком пористым. Прошло несколько лет, прежде чем немецкий химик Роберт Бунзен описал способ получения угольных стержней из прессованного молотого графита, который выделяли при сгорании светильного газа на раскалённых стенках реторт. Стержни стали прекрасным заменителем платины. Можно рассказать ещё о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырёх угольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря, соединяясь с цинком, давал хлористый цинк. Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается с элемента. Больше ток больше выделяется водорода. Водород же поляризует элемент, и последний быстро устаёт. Правда после некоторого отдыха он исправно работает снова. Однако лучше всего его было использовать при малых силах тока в телеграфии или в системе сигнализации, где между моментами работы существуют довольно большие промежутки. Великим достижением прошлого века, связанного с исследованием работы тех же элементов, явилось открытие возможности параллельного и последовательного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором — суммарный ток… Но расширение области практического использования электрической энергии стало возможно лишь в 70—80-е годы XIX веке с решением проблемы передачи электроэнергии на расстояние. В 1874 году Ф. А. Пироцкий пришёл к выводу об экономической целесообразности производства электроэнергии в местах, где имеются дешёвые топливные или гидроэнергетические ресурсы, с последующей передачей её к потребителю. В 1880—81 годах Д. А. Лачинов и М. Депре независимо друг от друга предложили для уменьшения потерь электроэнергии в линии электропередачи (ЛЭП) использовать ток высокого напряжения. Первая линия электропередачи на постоянном токе была построена Депре в 1882 году между городами Мисбахом и Мюнхеном (длина линии 57 км., напряжение в ней 1.5—2 кв.). Однако попытки осуществить электропередачу на постоянном токе оказались неэффективными, т. к., с одной стороны, технические возможности получения постоянного тока высокого напряжения были ограничены, а с другой — было затруднено его потребление. Поэтому наряду с использованием для передачи электроэнергии постоянного тока велись работы по применению в тех же целях однофазного переменного тока, напряжение которого можно было изменять (повышать и понижать) с помощью однофазного трансформатора. Создание промышленного типа такого трансформатора по существу решило проблему передачи электроэнергии. Однако широкое распространение однофазного переменного тока в промышленности было невозможно из-за того, что однофазные электродвигатели не удовлетворяли требованиям промышленного электропривода, и поэтому применение однофазного переменного тока ограничивалось лишь установками электрического освещения. В 70—80-е годах XIX века электроэнергию начали использовать в технологических процессах: при получении алюминия, меди, цинка, высококачественных сталей: для резки и сварки металлов; упрочнения деталей при термической обработке и т. д. В 1878 году Сименс создал промышленную конструкцию электроплавильной печи. Методы дуговой электросварки были предложены Н. Н. Бенардосом (1885 год) и Н. Г. Славяновым (1891 год). К концу 70-х годов относятся также первые попытки использования электроэнергии на транспорте, когда Пироцкий провёл испытания вагона, на котором был установлен электрический тяговый двигатель. В 1879 году Сименс построил опытную электрическую дорогу в Берлине. В 80-е годы трамвайные линии были открыты во многих городах Западной Европы, а затем в Америке (США). В России первый трамвай был пущен в Киеве в 1892 году. В 90-е годы электрическая тяга была применена и на подземных железных дорогах (в 1890 году в Лондонском метрополитене, в 1896 году — в Будапештском), а затем на магистральных железных дорогах. В конце XIX века промышленное использование электроэнергии превратилось в важнейшую комплексную технико-экономическую проблему — наряду с экономичной электропередачей необходимо было иметь электродвигатель, удовлетворяющий требованиям электропривода. Решение этой проблемы стало возможным после создания многофазных, в частности трёхфазных, систем переменного тока. Над этой проблемой работали многие инженеры и учёные (Н. Тесла, американский учёный Ч. Брэдли, немецкий инженер Ф. Хазельвандер и др.), но комплексное решение предложил в конце 80-х годах М. О. Доливо-Добровольский, который разработал ряд промышленных конструкций трёхфазных асинхронных двигателей, трёхфазных трансформаторов, и в 1891 году построил трёхфазную линию электропередачи Лауфен — Франкфурт (длина линии 170 км). Практическое применение трёхфазных систем положило начало современному этапу развития электротехники, который характеризуется растущей электрификацией промышленности, сельского хозяйства, транспорта, сферы быта и др. Увеличение потребления электроэнергии обусловило строительство мощных электростанций, электрических сетей, создание новых и расширение действующих электроэнергетических систем. Строительство мощных ЛЭП высокого напряжения привело к разработке разнообразного высоковольтного оборудования, электроизоляционных материалов, средств электроизмерительной и преобразовательной техники и т. д., а также стимулировало улучшение конструкций электрических машин и аппаратов, разработку методов анализа процессов в цепях переменного тока. Совершенствование электротехнических устройств способствовало формированию таких научных дисциплин, как высоких напряжений техники, теория электрических цепей, теория электрических машин, электропривод и др. Успехи электротехники оказали существенное влияние на развитие радиотехники и электроники, телемеханики и автоматики, а также вычислительной техники и кибернетики. Один из важных разделов электротехники — электромеханика охватывает вопросы преобразования энергии, практическое решение которых на широкой научной основе потребовало разработки специальных методов, связанных с анализом и описанием процессов, протекающих именно в электротехнических устройствах. Математическое описание таких процессов основано на решении уравнений Максвелла. При этом их дополняют уравнениями, описывающими конкретный процесс, или используют Вариационные принципы механики. Так, на основе Возможных перемещений принципа разработаны различные формализованные методы, среди которых наибольшее практическое применение при исследовании процессов, протекающих в электрических системах, машинах и аппаратах, находят методы: исключения уравнений с периодическими коэффициентами для взаимно перемещающихся цепей; выбора наиболее целесообразных систем обобщённых координат, анализа переходных процессов в электрических цепях; определения устойчивости работы нерегулируемых и регулируемых электрических машин, связанных линиями электропередачи, и др. Значительный вклад в развитие этих методов сделали А. А. Горев, П. С. Жданов, С. А. Лебедев, американский учёный Р. X. Парк, английские учёные О. Хевисайд, Г. Крон и др. Их труды легли в основу математической теории электрических машин и открыли возможность для применения сложного математического аппарата (тензорного исчисления, графов теории, теории матриц, операционного исчисления) при решении разнообразных прикладных задач, в частности связанных с изучением сложных электромеханических систем, переходных электромеханических и электромагнитных процессов, Использование тензорного исчисления привело к появлению такого приёма исследования, как диакоптика, при котором данные, характеризующие всю сложную систему (например, электрическую цепь, содержащую сотни и тысячи узлов и ветвей), можно получать, рассматривая поведение её отдельных частей. Особенно эффективным стало употребление формализованных методов в сочетании с машинным проектированием, являющимся одним из перспективных направлений при рассмотрении современных задач электромеханики (в частности, задач синтеза, решаемых на основе алгебры логики и теории направленных графов). Формализованные методы используют при исследовании многих проблемных задач электротехники, например таких, как изучение нелинейных цепей (а также возникающих в них гармонических и субгармонических колебаний), проводимое на основе методов анализа и синтеза, разработанных ранее для линейных цепей и трудах А. М. Ляпунова, Н. М. Крылова, Н. Н. Боголюбова, Л. И. Мандельштама, Н. Д. Папалекси, А. А.Андронова и др. Важное направление современной электротехники — разработка теоретических и экспериментальных методов исследований, основывающихся на подобия теории, аналоговом и физическом моделировании теории планирования эксперимента и позволяющих решать ряд принципиальных научно-технических проблем электротехники. К ним, в частности, относятся вопросы совершенствования существующих способов передачи электроэнергии и разработка новых. В круг этих вопросов входят: исследования процессов, протекающих в линиях электропередачи и преобразовательных устройствах; разработка и совершенствование управляемых элементов коммутационной аппаратуры; создание полупроводниковых преобразователей, способных эффективно работать в сочетании с электромеханическими устройствами, а также изучение возможности использования гиперпроводников и сверхпроводников в линиях электропередачи. Большое практическое значение имеет разработка способов оптимального управления сложными электроэнергетическими системами и повышения их надёжности. Решение этих задач основывается на использовании методов моделирования и вероятности теории. Необходимое условие для повышения устойчивости и надёжности работы электроэнергетических систем — создание мощных симметрирующих устройств, статических регуляторов и другой аппаратуры, обеспечивающей оптимальные режимы работы систем. Важные направления электротехники — создание сложных электромагнитных полей с заданными свойствами, требующее разработки методов расчёта и моделирования электрических и магнитных полей в ферромагнитных, плазменных и других нелинейных и анизотропных средах, а также исследование и определение оптимальной конфигурации систем (в частности, сверхпроводящих), создающих сильные магнитные поля; разработка теории управления электромагнитными полями и методов синтеза систем, создающих эти поля. Значительный интерес представляет изучение импульсных полей высокой интенсивности, в том числе разработка методов анализа взаимодействия таких полей с веществом, исследование тепловых и электродинамических процессов в электроэнергетических устройствах предельных параметров. Результаты этих работ находят применение при создании магнитопроводов для сверхмощных электрических трансформаторов и электрических реакторов. Теоретические и экспериментальные методы электротехника нашли своё развитие в ряде других отраслей науки и техники, связанных, в частности, с исследованием свойств вещества (полупроводников, плазмы), с разработкой и созданием средств ядерной и лазерной техники, изучением явлений микромира и жизнедеятельности живых организмов, освоением космического пространства. Достижения электротехники используются во всех сферах практической деятельности человека — в промышленности, сельском хозяйстве, медицине, быту и т.д. Электротехническая промышленность выпускает машины и аппараты для производства, передачи, преобразования, распределения и потребления электроэнергии; разнообразную электротехническую аппаратуру и технологическое оборудование; электроизмерительные приборы и средства электросвязи: регулирующую, контролирующую и управляющую аппаратуру для систем автоматического управления; электробытовые приборы и машины, медицинское и научное оборудование и др. |
Лента новостей | Главная | История | Цели и задачи | Информация | Проекты | Спонсоры и партнёры | Гостевая | Интернет-киоск | Контакты | Карта сайта
Культура | Спорт | Наука | Здоровье
Школа Майтрейя Сангха
Наша кладовая
Агни
Center of culture, science, health and sports «URGA».
© 2011 АНО «Центр культуры, науки, здоровья и спорта «УРГА».
- Что такое осень танец
- Что такое ппмс помощь