Что такое паротурбинная установка
Общие сведения и состав паротурбинной установки
Типы тепловых электростанций.
Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.
Тепловые электростанции можно классифицировать по различным признакам.
1.По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном топливе.
За электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС — тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя все приведенные на рис. 3.1 электростанции также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.
В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива — мазут, используя последний ввиду его дороговизны только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь — низкокалорийный уголь или отходы высококалорийного каменного угля (антрацитовый штыб — АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.
2. По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.
Районные электростанции — это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.).
Районные электростанции разделяются на:
Конденсационные тепловые электростанции(КЭС) – электростанции, вырабатывающие в основном электроэнергию с использованием конденсационных турбин.
Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.
Промышленные электростанции — это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы. Ниже рассматриваются только районные электростанции.
3. По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.
Паротурбинные тепловые электростанции имеют в основе паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину — паровую турбину. ПТУ — основной элемент ТЭС, ТЭЦ и АЭС.
Газотурбинные тепловые электростанции(ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ.
Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ).
4. По технологической схеме паропроводов ТЭС делятся на блочные ТЭС и на ТЭС с поперечными связями.
Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок — энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара.
На ТЭС с поперечными связями работа котлов и турбин обеспечивается по-другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.
5. По уровню начального давления различают ТЭС докритического давления и сверхкритического давления (СКД).
Критическое давление — это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД — 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняются с промежуточным перегревом и по блочной схеме. Часто ТЭС или ТЭЦ строят в несколько этапов — очередями, параметры которых улучшаются с вводом каждой новой очереди.
Общие сведения и состав паротурбинной установки
Паротурбинная установка (ПТУ) — это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паротурбинная установка является механизмом для преобразования потенциальной энергии сжатого и нагретого до высокой температуры пара в кинетическую энергиювращенияротора турбины. Включает в себя паровую турбину и вспомогательное оборудование. Паротурбинные установки используются для привода электрогенератора на тепловых и атомных электростанциях.
Принципиальная схема паротурбинной установки для привода электрогенератора изображена на рисунке 3.1.
|
Рис.3.1. Принципиальная схема паротурбинной установки
Свежий пар из котельного агрегата (1), где он получил тепло от сгорания топлива, поступает в турбину(2) и, расширяясь в ней, совершает механическую работу, вращая ротор электрогенератора (3). После выхода из турбины, пар поступает в конденсатор(4), где происходит его конденсация. Конденсат отработавшего в турбине пара при помощи конденсатного насоса(5) проходит через подогреватель низкого давления (ПНД) (6) в деаэратор(7). Из деаэратора питательный насос (8) подаёт воду через подогреватель высокого давления (ПВД) (9) в котельный агрегат.
Паровая турбина
Паровая турбина — ротативный тепловой двигатель с непрерывным процессом преобразования тепловой энергии рабочего вещества (пара) в механическую работу.
Паровая турбина состоит из двух основных частей (Рис.3.2):
Ротор состоит из вала с неподвижно закрепленным на нем диском с венцом рабочих лопаток. Перед каждым диском с рабочими лопатками укреплен сопловой аппарат, состоящий из нескольких неподвижных сопел, закрепленных в корпусе. Сопла образованы направляющими лопатками.
|
Основным условием работы турбины является наличие разности давлений – перед сопловым аппаратом и за рабочими лопатками.
Сопла, совместно с рабочими лопатками, образуют проточную часть турбины.
Проточная часть, состоящая из одного ряда сопел и одного ряда рабочих лопаток, образует простейшую турбинную ступень.
По принципу действия паровые турбины подразделяются активные и реактивные. Если перед входом в сопло пар имел некоторую начальную скорость и начальное давление
(рис.3.2 а и б), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения
и уменьшение давления пара до значения
. Скорость входа пара на рабочую лопатку
называется абсолютной скоростью. От абсолютной скорости пара зависит окружная скорость диска с венцом рабочих лопаток и, следовательно, число оборотов вала турбины.
После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит (рис.3.2 б), следовательно, давление пара не меняется. Вращение ротора осуществляется под воздействием силы за счет непосредственного ударного действия потока на лопатки. Следует иметь ввиду, что от абсолютной скорости пара зависит окружная скорость диска с венцом рабочих лопаток и, следовательно, число оборотов вала турбины.
Реактивными турбинами называют такие турбины, у которых расширение пара происходит не только в соплах перед поступлением пара на рабочие лопатки, но и на лопатках самого рабочего колеса. Это достигается тем, что канал, образованный рабочими лопатками выполняется суживающимся (рис.3.2 в). В соплах турбины происходит частичное расширение пара до промежуточного давления .
Дальнейшее расширение пара до давления происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения
.
На лопатках, вследствие наличия перепада давлений появляется реактивная отдача, и на рабочую лопатку действует сила . Следует иметь в виду, что и активные турбины нередко работают с некоторой реактивностью т.е., полная сила, действующая на лопатку, складывается из двух составляющих.
Поэтому деление турбин на активные и реактивные является условным; если турбина работает на 50% по реактивному принципу, то такую турбину принято называть реактивной.
Подразделение турбин по количеству ступеней. Одноступенчатыетурбины Комбинация одного ряда (по окружности) сопел и одного венца рабочих лопаток называется активной или реактивной ступенью.
Многоступенчатые турбины. В однодисковой турбине не удается достаточно полно использовать кинетическую энергию струи пара. Значительная часть ее теряется с выходной скоростью пара, покидающего турбину, что снижает КПД турбины. Кроме этого, для генераторов тока чрезмерно высокая частота вращения не требуется. Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. В целях снижения угловой скорости и повышения экономичности работы турбины их выполняют многоступенчатыми — со ступенями давленияи скорости.
|
Турбины со ступенями давления. В данном случае турбина состоит из нескольких, последовательно расположенных простейших одноступенчатых турбин, являющихся «ступенями» многоступенчатой турбины. Расширение рабочего вещества происходит постепенно, от ступени к ступени. (рис.3.3).
Рис. 3.3. Характер изменения давления и абсолютной скорости в активной турбине.
Можно записать: , где
— число оборотов вала турбины;
— окружная скорость диска с венцом рабочих лопаток,
— скорость выхода пара из сопел,
— перепад давления в соплах. Таким образом, чем больше ступеней давления, тем меньше число оборотов вала турбины.
В ступени давления возможно использовать кинетическую энергию не в одном, а в нескольких венцах лопаток, применив ступени скорости. Для этого на ободе диска размещают 2 (редко 3) венца рабочих лопаток, между которыми установлен венец неподвижных направляющих лопаток. Теоретически при 2 ступенях скорости оптимальная окружная скорость будет в 2 раза меньше, чем для одновенечной ступени, использующей тот же перепад давления. Однако много ступеней скорости практически не применяют из-за больших потерь в лопатках. Наиболее распространённым типом турбины можно считать активную паровую турбину с одним двухвенечным диском в первой ступени давления и одновенечными дисками в остальных ступенях.
|
С увеличением числа ступеней улучшается экономичность, т. к. тепловые потери предыдущей ступени используются в последующей, но растут размеры, масса и стоимость турбины. При небольшом (до 10—15) числе ступеней их размещают в одном корпусе (цилиндре), при большем (до 30—40) — в двух или трёх корпусах. Практически все турбины, кроме мелких вспомогательных, строят многоступенчатыми). Пример схемы компоновки многоцилиндровой паровой турбины приведен на рис.3.4.
Рис.3.4. Пример схемы компоновки многоцилиндровой паровой турбины (характеристики турбины К-300-240, z – число ступеней)
Общий вид ротора двухпоточного цилиндра низкого давления приведен на рис. 3.5.
Паротурбинная установка
Паротурби́нная устано́вка — это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паротурбинная установка является механизмом для преобразования потенциальной энергии сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Включает в себя паровую турбину и вспомогательное оборудование. Паротурбинные установки используются для привода турбогенератора на тепловых и атомных электростанциях.
Содержание
Основные сведения
Принципиальная схема паротурбинной установки для привода электрогенератора изображена на рисунке.
Свежий пар из котельного агрегата (1), где он получил тепло от сгорания топлива, поступает в турбину (2) и, расширяясь в ней, совершает механическую работу, вращая ротор электрогенератора (3). После выхода из турбины, пар поступает в конденсатор (4), где происходит его конденсация. Конденсат отработавшего в турбине пара при помощи конденсатного насоса (5) проходит через подогреватель низкого давления (ПНД) (6) в деаэратор (7). Из деаэратора питательный насос (8) подаёт воду через подогреватель высокого давления (ПВД) (9) в котельный агрегат.
Подогреватели (6) и (9) и деаэратор (7) образуют систему регенеративного подогрева питательной воды, которая использует пар из нерегулируемых отборов паровой турбины.
См. также
Литература
Ссылки
Полезное
Смотреть что такое «Паротурбинная установка» в других словарях:
Паротурбинная установка — установка по преобразованию энергии пара в работу, затрачиваемую на привод электрогенератора. В паротурбинную установку входят: турбина, конденсатор, система регенеративного подогрева питательной воды, деаэрационно питательная установка. Термины… … Термины атомной энергетики
паротурбинная установка — Установка, предназначенная для преобразования энергии пара в механическую, включающая паровую турбину и вспомогательное оборудование. [ГОСТ 26691 85] Тематики теплоэнергетика в целом … Справочник технического переводчика
Паротурбинная установка — 13. Паротурбинная установка Установка, предназначенная для преобразования энергии пара в механическую, включающая паровую турбину и вспомогательное оборудование Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа… … Словарь-справочник терминов нормативно-технической документации
ДИЗЕЛЬ-ПАРОТУРБИННАЯ УСТАНОВКА — комбинированная энергетическая установка, в которой в качестве главных двигателей используются паровые турбины и двигатели внутреннего сгорания. Дизель Паротурбинные Установки создавались в 30 е гг. XX в. для военных кораблей фашистской Германии … Морской энциклопедический справочник
ПТУ — паротурбинная установка передвижная телевизионная установка погрузочно транспортное управление подводное телевизионное устройство почтово телеграфное управление производственно техническое управление промежуточное трансляционное устройство… … Словарь сокращений русского языка
ГОСТ 26691-85: Теплоэнергетика. Термины и определения — Терминология ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа: МГД генератор 10. Аккумулятор тепла Устройство для накопления тепла с целью его дальнейшего использования Определения термина из разных документов: Аккумулятор … Словарь-справочник терминов нормативно-технической документации
Балаковская АЭС — Балаковская АЭС … Википедия
СП 90.13330.2012: Электростанции тепловые — Терминология СП 90.13330.2012: Электростанции тепловые: 3.1 блочная установка : Теплоэнергетическая установка, не имеющая связей по пару и воде с другими аналогичными установками ТЭС. Определения термина из разных документов: блочная установка… … Словарь-справочник терминов нормативно-технической документации
Теплоэлектростанция — (Thermal power, ТЭС) Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС, устройство ТЭС Содержание Содержание Определение Градирня Характеристики Классификация Типы… … Энциклопедия инвестора
ГРЭС — Государственная районная электростанция (ГРЭС) тепловая (конденсационная) электростанция, производящая только электрическую энергию. Содержание 1 История 2 Принцип работы 3 Основные системы … Википедия
Блог об энергетике
энергетика простыми словами
Паротурбинные установки тепловых электростанций (ТЭС)
Паровая турбина вместе с относящимися к ней регенеративными подогревателями, конденсатором, насосами, трубопроводами и арматурой образует паротурбинную установку.
Современная паровая турбина состоит из большого числа деталей, тщательно изготовленных и собранных в единый агрегат. Мощности современных энергетических турбоагрегатов постоянно повышаются, и в настоящее время основной прирост мощностей в энергосистемах происходит за счет ввода агрегатов 300, 500, 800 МВт. На Костромской ГРЭС сооружен головной агрегат мощностью 1200 МВт.
Увеличение мощности турбоагрегатов позволяет сооружать ТЭС большой мощности при одновременном удешевлении их строительства и эксплуатации и снижении расходов топлива на выработанный киловатт-час. Наряду с экономичностью современная турбина должна отвечать высоким требованиям безопасности, надежности и маневренности. Требование высокой маневренности предъявляется ко всему энергетическому оборудованию. Турбина должна допускать быстрый пуск, набор и изменение нагрузки и остановку. Эта задача весьма сложна для агрегатов, работающих при высоких начальных параметрах пара (26 МПа, 540-570 °С) и имеющих стенки корпусов и фланцы большой толщины.
При разработке и эксплуатации турбин приходится сталкиваться с весьма сложными проблемами аэродинамики, теории колебаний, теплопередачи, изменения свойств материалов при высоких температурах и вибрации, автоматического регулирования и контроля турбоустановки.
Рис. 1. Схема простейшей турбины
На рис. 1 показана схема простейшей турбины, а на рис. 2 — схема устройства многоступенчатой паровой турбины. Простейшая турбина состоит из соплового аппарата 1, рабочей лопатки 2, вала 3 и диска 4.
Рис. 2. Схема устройства многоступенчатой паровой турбины
1 — вал турбины; 2 — диски; 3 — рабочие решетки; 4 — нижняя половина корпуса; 5 — верхняя половина (крышка) корпуса; 6 — диафрагмы (нижние половины); 7, 8 – сопловые решетки; 9 – уплотнения диафрагмы; 10 – сопловая решетка первой ступени давления; 11 – переднее уплотнение; 12 – заднее уплотнение; 13 – опорные подшипники; 14 – упорный подшипник; 15 — соединительная муфта; 16 — червячная передача; 17 — масляный насос; 18 — фундаментные плиты; 19 — регулятор скорости; 20 — масляный бак; 21 — регулятор безопасности; 22 — камера отбора; 23 — окна для отбора пара; 24, 27 — опорные фланцы корпуса; 25, 26 — фланцы опорных блоков
Турбина состоит из вращающейся части — ротора и неподвижной части — статора. К ротору относятся вал и закрепленные на нем диски с рабочими лопатками. Статор включает в себя паровпускные органы, сопловые решетки, подшипники и др. Корпус турбины делается разъемным в горизонтальной плоскости по центровой линии вала. Нижняя его часть опирается на фундамент, а верхняя часть устанавливается на нижнюю и крепится по фланцам с помощью шпилек и гаек. Через паровпускные органы в сопловую коробку вводится свежий пар. Корпус заканчивается выхлопным патрубком, через который отработавший пар отводится из турбины.
В неподвижных каналах-соплах пар расширяется; при этом его давление и температура снижаются, скорость парового потока возрастает до нескольких сот метров в секунду и соответственно увеличивается его кинетическая энергия.
Она используется в подвижных рабочих лопатках, закрепленных на дисках, насаженных на вал турбины (рис. 2). Между дисками располагаются неподвижные перегородки — диафрагмы с закрепленными в них соплами. Диафрагма и диск с рабочими лопатками образуют ступень турбины.
На каждой ступени турбины лишь часть внутренней энергии пара преобразуется в механическую энергию, передаваемую с вала турбины на вал генератора электрического тока. Увеличение числа ступеней приводит к повышению КПД турбинной установки, так как в этом случае каждая ступень «работает» в более оптимальном режиме. Однако увеличение числа ступеней оправдывает себя лишь до определенного предела, так как с ростом числа ступеней турбина усложняется и становится дороже.
Крупные энергоблоки, работающие при высоком и закритическом давлении пара, выполняются с промежуточным перегревом. Пар высоких параметров, совершая работу в турбине, на последних ее ступенях увлажняется, а это приводит к снижению КПД и эрозионному воздействию капелек влаги на лопатки турбины. При использовании же промежуточного перегрева пара не только понижается его конечная влажность, но и повышаются показатели тепловой экономичности цикла. На рис. 3 дана схема одной из наиболее распространенных в нашей энергетике конденсационных турбин К- 300 — 240 мощностью 300 МВт, работающей при начальном давлении пара 240 атм (23,5 МПа). Температура свежего пара принята 540 — 560 °С, частота вращения 3000 об/мин.
Турбина состоит из трех цилиндров: цилиндра высокого давления (ЦВД), цилиндра среднего давления (ЦСД) и цилиндра низкого давления (ЦНД). В двенадцати ступенях ЦВД пар расширяется от указанных выше начальных параметров до давления 4 МПа, после чего направляется в промежуточный пароперегреватель (ПП), установленный в котле, и далее с давлением 3,5 МПа и температурой 540 — 560 °С поступает в ЦСД. В двенадцати головных ступенях ЦСД пар расширяется до давления 0,2 МПа, затем разделяется на два потока: одна треть проходит пять ступеней низкого давления, расположенных в ЦСД, и поступает в конденсатор, а две трети пара по перепускным трубам подаются в ЦНД, где, разделяясь на два потока, проходят по пяти ступеням низкого давления и направляются также в конденсатор. Давление пара за последними ступенями перед входом в конденсатор равно 0,0035 МПа. Разделение пара в части низкого давления на три потока связано с большими объемами пара в последних ступенях. Выпуск всего объема пара через одну решетку приводил бы к недопустимым по соображениям прочности высотам рабочих лопаток. Даже при разделении пара в последних ступенях на три потока высота лопаток составляет 960 мм, а окружная скорость на их вершинах — 540 м/с. При массе последней лопатки 9,8 кг центробежная сила, действующая на нее, равна
Еще более сложны турбины большей мощности. Так, у турбин мощностью 500 МВт делается 4 выхлопа в конденсатор, а у турбины К-800-240 мощностью 800 МВт — шесть выхлопов в конденсатор. В турбине К-1200-240 мощностью 1200 МВт, установленной на Костромской ГРЭС, лопатки последних ступеней имеют длину 1200 мм, но для уменьшения центробежных сил они выполнены из более легкого титанового сплава.
Рис. 3. Изменение параметров рабочего тела в активной турбине:
1, 9 — камеры свежего и отработанного пара; 2,4,6 — сопла; 3,5,8 — рабочие лопатки; 7 — диафрагма.
Рис. 4. Схема турбины К-300-240 (z — число ступеней)
Теплофикационные турбины, устанавливаемые на ТЭЦ, могут иметь 1 или 2 регулируемых отбора (например, промышленный и теплофикационный). В теплофикационной турбине Т — 250 — 240 имеются 2 отбора пара для подогрева воды в системе теплоснабжения (из них один регулируемый) и, кроме того, может быть осуществлен предварительный нагрев сетевой воды в специальном подогревателе, встроенном в конденсатор.
Отработавший пар конденсационных турбин и турбин с промышленными и теплофикационными отборами поступает в конденсатор, где поддерживается давление значительно ниже атмосферного. В конденсаторе осуществляется отвод тепла от рабочего тела — пара — при возможно более низкой температуре и давлении с превращением пара в конденсат, идущий вновь на питание котлов. Здесь тепло отдается охлаждающей (циркуляционной) воде. Конденсат не должен смешиваться с охлаждающей водой, имеющей большое количество примесей. Поэтому конденсатор представляет собой теплообменник поверхностного типа.
На рисунке 5 приведена схема конденсатора паровой турбины.
Рис.5. Схема конденсатора паровой турбины:
1 – патрубок для выхода воды, 2 – крышка водяных камер, 3 — водяные камеры, 4 – трубные решетки, 5 – корпус конденсатора, 6 – пароприемная горловина, 7 — трубки, 8 — сборник конденсата, 9 — патрубок для подвода воды, 10 — патрубок для удаления воздуха.
Для поддержания хороших условий теплообмена и постоянного парциального давления воздуха, а вместе с ним и общего давления в конденсаторе просачивающийся в конденсатор воздух необходимо непрерывно удалять. Для этого устанавливаются воздухоотсасывающие устройства — пароструйные или водоструйные эжекторы.
Конденсат из нижней части конденсатора откачивается конденсатными насосами и подается через подогреватели в котел. Конденсатор устанавливается под турбиной и представляет собой горизонтально расположенный сосуд, сваренный из листовой стали. Внутри корпуса конденсатора на некотором расстоянии от его торцов ввариваются специальные пластины с отверстиями, называемые трубными досками, в которые завальцовываются трубки, образующие поверхности теплообмена. Корпус с торцов закрывается крышками так, что между крышками и трубными досками образуются водяные камеры.
Если в одной из камер установить горизонтальную перегородку, то по-лучим двухходовой конденсатор: охлаждающая вода поступает в нижний (подводящий) патрубок передней камеры, проходит по нижним рядам труб и через заднюю камеру поступает в верхние ряды труб, после чего удаляется из конденсатора.
Для рассмотренной выше турбины К-300-240 Ленинградского металлического завода конденсатор имеет следующие характеристики:
Количество трубок, шт. | 19600 |
Длина трубок, м | 8,9 |
Диаметр dн, мм | 28 |
Диаметр dвн, мм | 26 |
Расход пара при номинальной нагрузке турбины, т/ч | 570 |
Номинальный расход охлаждающей жидкости, т/ч | 36000 |
Источник: Полещук И.З., Цирельман Н.М. Введение в теплоэнергетику: Учебное пособие пособие / Уфимский государственный авиационный технический университет. – Уфа, 2003.