Что такое погрешность метрология
Погрешности измерений
Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».
Содержание
Определение погрешности
В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.
Классификация погрешностей
По форме представления
где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
.
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
,
— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
По причине возникновения
В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.
13. Погрешность измерений
13. Погрешность измерений
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.
Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.
Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.
Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.
Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.
Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из—за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.
Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.
Составляющие погрешности могут также делиться на: методическую, инструментальную и субъективную. Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из—за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из—за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из—за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Есть также такое понятие, как «грубые погрешности или промахи», которые могут появляться из—за ошибочных действий оператора, неисправности СИ или непредвиденных изменений ситуации измерений. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого—либо фактора.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
3. Классификация измерений
3. Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой
5. Основные характеристики измерений
5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –
9. Средства измерений и их характеристики
9. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно—измерительные приборы (КИП), и
16. Погрешности средств измерений
16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную
18. Выбор средств измерений
18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в
21. Поверка и калибровка средств измерений
21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся
2 Классификация измерений
2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой
3. Основные характеристики измерений
3. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений – это
8. Средства измерений и их характеристики
8. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и
13. Погрешность измерений
13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения
16. Погрешности средств измерений
16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.
18. Выбор средств измерений
18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в
5.4.6 Оценка неопределенности измерений
5.4.6 Оценка неопределенности измерений 5.4.6.1 Калибровочная лаборатория или испытательная лаборатория, осуществляющая свои собственные калибровки, должна иметь и применять процедуру оценки неопределенности измерений при всех калибровках и типах калибровок.5.4.6.2
5.6 Прослеживаемость измерений
5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность
Общие вопросы измерений
Общие вопросы измерений Когда измерение становится проблемой Во-первых, когда предполагается измерять какую-то новую величину. Тут есть тонкость — что значит «новая величина»? Физики и инженеры считают, что существует то, что можно измерить. В величину, которую мы
Обработка результатов измерений
Обработка результатов измерений Нет данных без обработки и нет обработки без предварительной информации. Когда мы измеряем тестером напряжение в сети, мы немедленно делаем свой вывод — «нормально» или «низковато для этого времени суток» или «почему так много, тестер
Виды погрешностей
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.
Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.
Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.
Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.
Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.
Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из-за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.
Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.
Выделяют следующие виды погрешностей:
Погрешности измерений классифицируются по следующим признакам.
По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.
По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.
По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Абсолютная погрешность вычисляется по следующей формуле:
Относительная погрешность вычисляется по следующей формуле:
Относительная погрешность выражается в процентах.
Нормирующее значение определяется следующим образом:
1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;
2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;
3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;
4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.
Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.
Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.
Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.
Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.
Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:
1) систематические погрешности;
2) случайные погрешности.
В процессе измерения могут также появиться грубые погрешности и промахи.
Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.
Способы исключения систематических погрешностей делятся на четыре вида:
1) ликвидация причин и источников погрешностей до начала проведения измерений;
2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;
3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);
4) определение пределов систематической погрешности в случае, если ее нельзя устранить.
Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).
Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы
Погрешность измерений
Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.
Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.
По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные
Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.
(1.2), где X — результат измерения; Х0 — истинное значение этой величины.
Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением
(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.
Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:
(1.4)
По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .
Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.
Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.
Систематические и прогрессирующие погрешности средств измерений вызываются:
Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.
Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.
По происхождению различают инструментальные и методические погрешности средств измерений.
Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.
Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.
Погрешности средств измерений.
Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:
(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры
Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:
(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.
Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному
(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).
(1.7)
Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).
(1.8)
Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.
Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.
Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.
Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.
Факторы влияющие на погрешность измерений.
Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений
Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.
Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.
Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.
Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.
Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.
Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.
Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.
Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.
Шумы — любой сигнал не несущий полезной информации.