Что такое показатель энергетической эффективности

показатель энергетической эффективности

показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

17 показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

3.2 показатель энергетической эффективности : Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

3.2 показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

3.1.28 показатель энергетической эффективности; ПЭЭ: По ГОСТ Р 51387.

22 показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

3.7 показатель энергетической эффективности: По ГОСТ Р 51387.

22 показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

Смотри также родственные термины:

3.9.28 показатель энергетической эффективности объекта или технологического процесса : Абсолютная или удельная величина потребления или потерь ТЭР на производство товарной продукции отрасли, устанавливаемая государственными стандартами или отраслевыми документами.

93 показатель энергетической эффективности пассивного оборудования при использовании: Характеристики свойств изоляционных и электропроводящих материалов электрических линий и сетей промышленного, коммунального назначения, изоляционных и конструкционных материалов трубопроводов сохранять и передавать электрическую или тепловую энергию, топливо, энергоносители на различные расстояния в регламентированных режимах функционирования, а также характеристика целенаправленно запасенной энергии при изготовлении оборудования и/или содержащейся в нем и определяющей его энергетический потенциал для последующего использования по назначению в регламентированных режимах функционирования.

3.1.2 показатель энергетической эффективности энергопотребляющего оборудования (экономичности энергопотребления): Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов, характеризующая эксплутационные свойства и отражающая техническое совершенство этого оборудования по уровню и степени потребления им энергии при его использовании по прямому функциональному назначению.

3.2 В настоящем стандарте применены следующие сокращения:

Полезное

Смотреть что такое «показатель энергетической эффективности» в других словарях:

Показатель энергетической эффективности — – абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса. ГОСТ Р 51387 99. ФЗ «Об энергосбережении», ст. 1 … Коммерческая электроэнергетика. Словарь-справочник

Показатель энергетической эффективности (объекта) — Количественная характеристика уровней рационального потребления и экономного расходования ТЭР при создании продукции, реализации процессов, проведении работ и оказании услуг, выраженная в виде абсолютного, удельного или относительного показателя… … Словарь-справочник терминов нормативно-технической документации

показатель энергетической эффективности; ПЭЭ — 3.1.7 показатель энергетической эффективности; ПЭЭ: По ГОСТ Р 51387. Источник … Словарь-справочник терминов нормативно-технической документации

показатель энергетической эффективности объекта или технологического процесса — 3.9.28 показатель энергетической эффективности объекта или технологического процесса : Абсолютная или удельная величина потребления или потерь ТЭР на производство товарной продукции отрасли, устанавливаемая государственными стандартами или… … Словарь-справочник терминов нормативно-технической документации

показатель энергетической эффективности пассивного оборудования при использовании — 93 показатель энергетической эффективности пассивного оборудования при использовании: Характеристики свойств изоляционных и электропроводящих материалов электрических линий и сетей промышленного, коммунального назначения, изоляционных и… … Словарь-справочник терминов нормативно-технической документации

показатель энергетической эффективности энергопотребляющего оборудования (экономичности энергопотребления) — 3.1.2 показатель энергетической эффективности энергопотребляющего оборудования (экономичности энергопотребления): Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов, характеризующая эксплутационные… … Словарь-справочник терминов нормативно-технической документации

Нормативный показатель энергетической эффективности процесса — См. Нормативный показатель энергетической эффективности объекта … Коммерческая электроэнергетика. Словарь-справочник

Нормативный показатель энергетической эффективности (объекта ЖКХ, процесса — ) Установленная в нормативной документации на объект (процесс) количественная характеристика уровней рационального потребления и экономного расходования ТЭР при создании продукции, реализации процессов, проведении работ и оказании услуг,… … Словарь-справочник терминов нормативно-технической документации

Источник

Коэффициенты энергоэффективности COP, EER, SCOP и SEER и их значение в выборе системы отопления

Для оценки тепловой эффективности отопления применяется ряд показателей, по которым можно судить, насколько хорош и экономичен тот или иной тип оборудования для решения поставленной задачи. Такой показатель, как КПД обогрева, используется по отношению к любой отопительной технике, а вот характеристики общей энергоэффективности COP/ERR и ее сезонных значений SCOP/SERR актуальны для кондиционеров и тепловых насосов.

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

КПД (коэффициент полезного действия)

КПД (коэффициент полезного действия) отражает соотношение затрат энергии на выработку тепла к полезному теплу идущему на обогрев жилища. Грубый расчет КПД отопления осуществляется по формуле η = А/Q, где А – затраченная энергия, Q – полезная теплота. Но, она не учитывает множества нюансов, которые следует принимать в расчет. Любая система отопления использует расходные материалы (топливо или электроэнергию), которые обеспечивают нагрев теплоносителя. Зная теплотворную способность разных видов топлива или расход электроэнергии на обогрев единицы площади, можно сравнить энергетический потенциал отопительной системы. В сравнительной таблице представлены приблизительные значения теплотворности и стоимость наиболее эффективных источников энергии, используемых в отоплении:

Источник энергииЕдиница измеренияСтоимость единицы, рубУдельная теплота сгорания, кВт
Электроэнергия1 кВт*ч4.251
Природный газ1 м36.59.0
Древесные пеллеты1 кг104.5
Дизельное топливо1 л4911.8

КПД газового конденсационного котла составляет 100%+, обычного газового котла составляет 90 – 92%, для котла на солярке это будет около 90%, значение для твердотопливного котла на пеллетах составит 75 – 80%, а электрический котел даст все 98%. Нехитрые расчеты показывают, что несмотря на высокий КПД и теплотворность электрического котла, стоимость используемого источника энергии слишком высока для того, чтобы он стал приоритетным оборудованием для отопления дома. Дизтопливо и природный газ делят 2 и 3 места по экономичности обогрева, а древесные пеллеты оказываются более выгодным вариантом. А установка газового котла связана с определенными условиями и согласованиями при том, что безопасная эксплуатация требует тщательного контроля.

Сегодня у собственников частных домовладений набирает обороты популярность отопления с помощью сплит-систем с «зимней» функцией обогрева при сильном морозе, а также тепловыми насосами, использующих перенос тепла с улицы в помещение.Следует учитывать, что КПД таких систем обогрева не имеет фиксированного значения и очень сильно зависит от температуры воздуха на улице, из которого система получает тепловой потенциал.

Еще один важный аспект энергоэффективности заключается в учете тепловых потерь в помещениях, которых невозможно избежать в практической эксплуатации. Полезное тепло уходит через стены, оконные переплеты, потолочные перекрытия, пол, а также расходуется на инфильтрацию, представляющую неконтролируемый воздухообмен, возникающий через невидимые глазу щели в строительных конструкциях. Кроме того нужно учитывать и контролируемые потери тепла через систему вентиляции. Величина тепловых потерь зависит от разницы температур в помещении и на улице и при сильном морозе значительно возрастает. В сети можно найти множество онлайн-калькуляторов, которые помогут определить значение безвозвратных потерь тепла. Не вдаваясь в подробности математических формул, можно подсчитать примерное значение тепловых потерь в помещениях разной площади с учетом толщины и типов разных материалов стен и отделочных материалов.

Расчет базовых коэффициентов охлаждения EER и обогрева COP

При покупке кондиционера или теплового насоса обязательно обращайте внимание на такую важную характеристику, как потребление электроэнергии. В руководстве пользователя и на табличке этих тепловых преобразователей указаны такие параметры, как ERR и COP, которые являются общепризнанными международными показателями, использующимися во всех странах, чтобы исключить путаницу с маркировкой техники. Эти коэффициенты условно сопоставимы с КПД отопительных приборов, работающих на ископаемом топливе, но оцениваются не в процентах, а обычным числом. Чем выше значение коэффициента, тем лучше, потому что вы будете затрачивать на единицу работы меньше энергоресурсов. Коэффициент энергетической эффективности ERR (Energy Efficiency Ratio) представляет собой моментальный индекс производительности устройства при работе в режиме охлаждения. Он вычисляется как отношение холодопроизводительности прибора QX к полной потребляемой мощности Nпотр.:

Коэффициент энергоэффективности обогрева COP (Coefficient of Performance) отображает тепловой индекс равный мощности обогрева QT деленной на мощность потребления Nпотр.:

Говоря проще, эти коэффициенты показывают количество тепла и холода, производимого кондиционером на единицу потребленной электроэнергии в данный конкретный период времени. Для бытовых кондиционеров и сплит систем значение EER колеблется в пределах 2.2 – 3.5, а показатели COP несколько выше: от 2.4 до 4. Это обусловлено тем, что работающее оборудование вырабатывает больше тепла, чем холода, что стало для недобросовестных производителей основанием использовать маркетинговые хитрости. Они стали писать на своей продукции лишь более высокое значение коэффициента COP, совсем не указывая EER. Приведем пример конкретных значений указанных на табличке к устройству. При одних и тех же условиях кондиционер может иметь значение коэффициентов EER – 3.2 и COP – 3.6. Это означает, что на 1 кВт потребленной электроэнергии он произведет 3.2 кВт холода или 3.6 тепла.

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

Оба индекса рассчитываются для номинального режима в стандартных условиях, что позволяет быстро оценить эффективность работы оборудования на охлаждение или нагрев помещения. При этом замеры значений выполнялись на максимальной нагрузке работы оборудования, а в качестве базовых условий для измерения показателей коэффициентов энергоэффективности по стандарту ISO 5151 принималась наружная температура окружающего воздуха +35 °C для режима охлаждения и +7 °C для режима обогрева.

С поправкой на сезон: коэффициенты SEER и SCOP и действующие классы энергоэфективности

Система определения энергоэффективности оборудования, базирующаяся на коэффициентах EER и COP, действовавшая до 2013 г., до каких-то пор всех устраивала. В соответствии с ней каждому числовому диапазону коэффициента соответствовала одна из 7 букв класса энергоэффективности (от A до G):

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

Но с появлением директивы Евросоюза ErP (Energy related Products), направленной на приоритетное использования возобновляемых источников энергии и жесткий контроль энергосбережения, потребовался пересмотр правил игры.

По нововведенной классификации классы теперь распределяется в диапазоне от A до D, а в экономичной «зеленой» зоне теперь находятся устройства, ограниченные буквами А с «плюсами» и без и B, что составляет 5 классов:

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

Добавление буквы S (season) к аббревиатуре коэффициента, говорит о том, что сейчас актуальным и более точным параметром является оценка экономичности работы устройства в течение одного сезона, а не как в случаях COP и EER точечно в данный момент. Новая система классификации энергоэффективности на основе сезонных (среднегодовых) коэффициентов SEER и SCOP позволила учитывать работу техники в разных климатических условиях. Поскольку расчеты этих коэффициентов проводятся для разных температур эксплуатации, полученные значения более достоверно отражают эффективность работы кондиционера. Вступившие сейчас в силу изменения выделяют в Европе 3 географические зоны с теплым, умеренным и холодным климатом, которые следует учитывать при работе в режиме обогрева:

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

Условия расчетов выявляют и скрытые доселе преимущества моделей с инверторным управлением. которые непрерывно работают с частичной нагрузкой, позволяя сэкономить до 40% на эксплуатационных расходах за счет пониженного потребления электроэнергии.

Основным показателем затрат на сезонное отопление является такая характеристика, как градусо-сутки отопительного периода, которая рассчитывается по формуле:

ГСоп = (tВН – tОП) * ZОП,

где tВН обозначает температуру воздуха, поддерживаемую в помещении, tОП — среднюю уличную температуру в отопительный период, ZОП — продолжительность отопительного сезона (ОС). Для вычисления принимаем температуру в помещении равную 20 °C, а продолжительность отопительного сезона считаем по дням, когда температура на улице не превышает +8 °C. Исходные показатели отличаются по разным городам страны и зависят от их географического положения на карте.

Табличные показатели демонстрируют, что разница эксплуатационных расходов на отоплении в средней полосе на 25% больше, чем на юге страны.

В наших климатических условиях можно рассмотреть разницу в затратах на отоплении на примере таких городов как Санкт-Петербург, Москва и Сочи.

ГородаСредняя температура наружного воздуха в холодное время годаПродолжительность отопительного сезонаСредняя суточная температура ОСГрадусо-сутки ОС (при tВН = 20 °C)
Москва-14 °C214-3.1 °C4943
Санкт-Петербург-11 °C220-1.8 °C4796
Сочи+5 °C154+6.4 °C2094

Обширная география и множество различий климатических условий показывают, насколько велика разница в эксплуатационных расходах на отопление в разных городах страны. И это только в европейской зоне без учета суровых условий севера и Сибири. По таблице сравнения хорошо видно, что жители обеих столиц в зимний период потратят на обогрев жилья примерно в 2.5 раза больше средств, чем жители курортного Сочи.

Чем выгоднее отапливать и окупаемость теплового оборудования

Расходную часть любой системы отопления можно разбить на следующие составляющие, которые зачастую определяют выбор типа оборудования:

Разовые затраты на покупку и монтаж теплового оборудования

Стоит принять во внимание, что при покупке котла отопления следует учесть не только стоимость основного оборудования, но и затраты на обвязку, прокладку дымохода, а в некоторых случаях и обустройство отдельного помещения (котельной). В этом плане у электрических котлов, которые не нуждаются в дополнительных расходах при вводе в эксплуатацию, несомненное преимущество.

Особо следует отметить проблемность бюрократической волокиты, связанную с подключением газовых котлов. Перед установкой нужно разработать проект, который не удасться сделать своими силами, для чего следует обращаться в профильную проектную организацию, имеющую на это лицензионные полномочия. Все технические условия и детали проекта должны пройти согласование с соответствующими органами газовой службы, а в дальнейшем все работы по монтажу должны выполняться сертифицированными специалистами. Обязательно должен быть заключен контракт на индивидуальную поставку газа для отопительных нужд. После прохождения «всех кругов ада» нужно получить итоговое заключения специалиста газовой конторы о том, что все сделано правильно и котлом можно пользоваться. Это все долго, хлопотно и накладно, поэтому перед тем как ввязываться в эту историю, есть смысл подумать, а «стоит ли игра свеч»?

У котлов на твердом топливе, независимо от типа расходного ресурса, существует другая проблема. Загрузку топлива приходится выполнять вручную, а это очень тяжело физически. Немного выручает бункерная подача, но все равно ручной труд никто не отменял. Фактически, выбирая твердотопливный котел, нужно готовиться к тому, что вы будете истопником-кочегаром в собственной домашней котельной. И хорошо, если вас кто-то сможет подменить, когда вы приболели или плохо себя чувствуете.

Тепловые насосы, использующие внешнее тепло применяются не только для обогрева дома, но и снабжения его горячей водой. Тепловые насосы типа «грунт-вода» обладают высоким коэффициентом энергоэффективности, хорошей теплоотдачей, но нуждаются в сложных и дорогостоящих работах по бурению скважин и прокладке коммуникаций. Обычно, пуско-наладка такого оборудования по затратам превышает их стоимость, поэтому если вы считаете, что лучше потратиться на монтажные работы, чтобы сэкономить на эксплуатации, то это хорошее решение. Тепловая техника типа «вода-вода», использующая тепло геотермальных источников, также требует расходов на прокладку водозаборных коммуникаций и обслуживание насосов, но она переваривает больше электроэнергии, чем грунтовые модели и, соответственно, коэффициенты отдачи ещё лучше.

Современные тепловые насосы «воздух-воздух» и «воздух-вода» также обладают наивысшими коэффициентами энергопотребления класса А++, поэтому финансовые затраты по сравнению с отоплением газом меньше в среднем в 2 раза, а по сравнению с электрическим отоплением в 4 раза. Тепловые насосы «воздух-вода» представляют собой оптимальные решения с минимумом вложений в монтажные работы, но очень зависимы от температуры внешнего воздуха. Они наилучшим образом раскрывают свой потенциал в системах поверхностного отопления (теплые полы и стены), требующих температуру в системе отопления от 30 – до 35 °C.

Что такое показатель энергетической эффективности. Смотреть фото Что такое показатель энергетической эффективности. Смотреть картинку Что такое показатель энергетической эффективности. Картинка про Что такое показатель энергетической эффективности. Фото Что такое показатель энергетической эффективности

Кондиционеры с возможностью обогрева и тепловые насосы класса «воздух-воздух» не очень продуктивны в качестве полноценной замены тепловой техники для радиаторного отопления. Расходы на монтаж таких устройств — самые низкие, а стоимость покупки кондиционера с обогревом или насоса лишь в 1.5 выше, чем котла отопления, поэтому такая техника довольно быстро окупается. Но исходя из специфики работы этого оборудования, его лучше использовать в теплых регионах с мягким климатом.

Расходы на эксплуатацию и срок окупаемости

Кроме источника тепловой энергии, который служит расходным материалом, на потребление в отопительный сезон будут влиять:

Безусловно, основными критериями выбора теплового оборудования будут его стоимость и примерные затраты в отопительный сезон с учетом существующих рыночных цен.

Чем дешевле отапливать дом: расчетная таблица

Если вас не пугает долгий и тернистый путь сбора необходимой разрешительной документации и «хождений по мукам», то очевидным выбором с точки зрения экономичной эксплуатации при нынешних ценах на энергоносители является газовый котел. А по энергоэффективности ему «дышит в спину» более современный и экологичный тепловой насос.

Наиболее низкая цена электрического котла стоимостью около 1000 долларов на практике перекрывается неподъемными расходами из-за высокого и постоянно растущего тарифа на электроэнергию (см. выше). Да, у него будет быстрая окупаемость (1 – 2 года), но целесообразность покупки при больших затратах на отоплении оправдана лишь тогда, когда в доме нет подвода газа, невозможно установить твердотопливный котел или просто нет средств на покупку теплового насоса (6200 долларов).

Стоимость газового или твердотопливного котла (от 1000 до 2000 долларов) представляет собой «золотую середину» по первоначальным затратам, монтажу и эксплуатации. Отопительный котел — это испытанное временем оборудование с высокой теплотворностью, которое полностью может обеспечить домочадцев теплом и горячей водой круглый год. А еще у него плюс в том, что котел уместен в любом климате. Средний срок окупаемости данных тепловых приборов зависит, прежде всего, от площади отапливаемых помещений и составляет 6 – 10 лет.

Сплит системы с функцией отопления и тепловые насосы являются хорошим средством резервного или дополнительного отопления в средней полосе, а также неплохим вариантом обогрева жилья в южных районах страны. Окупаемость таких приборов составляет 2 – 4 года для кондиционеров и 5 – 8 лет для теплового насоса. Это очень короткий срок по сравнению с долгим и безотказным ресурсом данного оборудования, составляющим десятки лет.

Более прогрессивными, но пока мало распространенными являются системы электрического обогрева, на восполняемых источниках энергии — солнце и ветре. Здесь многое будет зависеть от розы ветров на вашем участке и количества солнечных дней в году. А еще такое оборудование достаточно дорогое и окупится не скоро, несмотря на «бесплатные» природные ресурсы.

Если в зоне застройки случаются перебои с подачей газа и электричества, то стоит рассмотреть вариант с комбинированным отоплением, используя несколько источников обогрева, которые смогут заменить друг друга в аварийный период.

Источник

Что такое показатель энергетической эффективности

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЭНЕРГОПОТРЕБЛЯЮЩЕЕ ОБОРУДОВАНИЕ ОБЩЕПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ

Виды. Типы. Группы. Показатели энергетической эффективности. Идентификация

Energy conservation. Energy consuming equipment in general
industrial application. Kindes. Types. Groups.
Indicators of energy efficiency. Identification

ОКСТУ 3103; 3104; 3403; 3404

Дата введения 2002-01-01

1 РАЗРАБОТАН ФГУ «Российское агентство энергоэффективности» Минэнерго России

ВНЕСЕН ФГУ «Российское агентство энергоэффективности» Минэнерго России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21 мая 2001 г. N 210-ст

Введение

Энергосбережение является одним из ключевых направлений энергетической политики России в процессе реализации ФЦП «Энергосбережение» [1], разработанной на основе Закона Российской федерации «Об энергосбережении».

В Статье 4 Закона РФ «Об энергосбережении» установлены принципы энергосберегающей политики государства, к числу которых относятся:

— приоритет эффективного использования энергетических ресурсов;

— осуществление государственного надзора за эффективным использованием энергетических ресурсов;

— включение в государственные стандарты на оборудование, материалы и конструкции, транспортные средства показателей их энергоэффективности.

Соответствие показателей энергоэффективности действующего энергетического оборудования нормативным значениям ПЭЭ подтверждают органы государственного энергетического надзора [8] при сертификации энергооборудования, потребляющего за год более 6000 т условного топлива или более 1000 т моторного топлива (статья 10 Закона РФ «Об энергосбережении»).

В свою очередь, выполнение задания ФЦП «Энергосбережение» в 2000 г. и в последующие годы также должно базироваться на развитой нормативно-методической основе [2], то есть на стандартах, имеющих статус межгосударственных или российских и устанавливающих номенклатуру показателей энергетической эффективности по видам энергопотребляющего оборудования, материалов, конструкций и транспортных средств.

Настоящий стандарт устанавливает:

— виды и подвиды энергопотребляющего оборудования;

— типы энергопотребляющего оборудования;

— группы и подгруппы энергопотребляющего оборудования;

— основные показатели энергетической эффективности потребления топливно-энергетических ресурсов (ТЭР) для оборудования общепромышленного применения.

Следует отметить, что в нормативных правовых актах [3] отсутствует термин «оборудование», в связи с чем его решено установить в настоящем стандарте с идентификацией активно потребляющего, преобразующего ТЭР и пассивно передающего ТЭР оборудования, а также строительных сооружений (в т.ч. материалов и конструкций).

Положения настоящего стандарта позволят целенаправленно и обоснованно вносить показатели энергоэффективности в нормативные документы на энергопотребляющее оборудование и решать большое количество инженерно-технических, научно-исследовательских, технико-экономических задач, направленных на реализацию в сфере народного хозяйства энергетической политики России в отношении:

— повышения энергетической эффективности энергопотребляющего оборудования общепромышленного применения и технологических процессов;

— повышения энергетической эффективности ТЭР, расходующих свой накопленный (природный) или наведенный техногенными способами энергетический потенциал;

— уменьшения потерь ТЭР в народном хозяйстве;

— разработки нормативов энергосбережения ТЭР;

— планирования и управления энергосбережением ТЭР на всех стадиях жизненного цикла энергопотребляющего оборудования.

Настоящий стандарт является одним из комплекса нормативных документов России «Энергосбережение», призванных в дополнение ГОСТ Р 51387 и ГОСТ Р 51541 создать развитую и энергоэффективную нормативную базу для проведения работ по энергосбережению на предприятиях различных отраслей народного хозяйства.

1 Область применения

Стандарт не распространяется на энергопотребляющие объекты военной техники, ядерные, химические и биологические энергопотребляющие объекты.

Положения настоящего стандарта применяют в научно-технической, учебной и справочной литературе, при планировании разработок энергопотребляющего оборудования и установлении в нормативных документах показателей энергоэффективности потребления ТЭР.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3.1109-82 Единая система технологической документации. Термины и определения основных понятий

ГОСТ 19431-84 Энергетика и электрификация. Термины и определения

ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям. Общие требования

ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ Р 51388-99 Энергосбережение. Информирование потребителей об энергоэффективности изделий бытового и коммунального назначения. Общие требования

ГОСТ Р 51541-99 Энергосбережение. Энергетическая эффективность. Состав показателей. Общие положения

3 Определения и сокращения

3.1 В настоящем стандарте применяют термины с соответствующими определениями, приведенными в ГОСТ 3.1109, ГОСТ 19431, ГОСТ Р 51387, ГОСТ Р 51541, [3], а также следующие:

3.1.1 энергосбережение: По ГОСТ Р 51387.

3.1.2 энергоноситель: По ГОСТ Р 51387.

3.1.3 топливно-энергетический ресурс: По ГОСТ Р 51387.

3.1.4 вторичный энергетический ресурс: По ГОСТ Р 51387.

3.1.5 энергоемкость производства продукции: По ГОСТ Р 51387.

3.1.6 эффективное использование энергетических ресурсов: По ГОСТ Р 51541.

3.1.7 показатель энергетической эффективности; ПЭЭ: По ГОСТ Р 51387.

3.1.8 показатель экономичности энергопотребления изделия: По ГОСТ Р 51387.

3.1.9 показатель энергосбережения: По ГОСТ Р 51541.

3.1.10 возобновляемые топливно-энергетические ресурсы: По ГОСТ Р 51387.

3.1.11 оборудование: Необходимые технические средства для обеспечения изготовления изделий [4].

3.1.12 технологическое оборудование: Орудия производства, в которых для выполнения определенной части технологического процесса размещаются материалы или заготовки, средства воздействия на них и, при необходимости, источники энергии [4].

3.1.13 энергоустановка: По ГОСТ 19431.

3.1.14 экономичность энергопотребления изделия (активного оборудования) при функционировании: Характеристика затрат оборудованием ТЭР в регламентированных режимах функционирования.

3.1.15 показатели энергетической эффективности пассивного оборудования при использовании: Характеристики свойств изоляционных и электропроводящих материалов электрических линий и сетей промышленного, коммунального назначения, изоляционных и конструкционных (несущих) материалов трубопроводов сохранять и передавать электрическую или тепловую энергию, топливо, энергоносители на различные расстояния в регламентированных режимах функционирования; а также характеристика целенаправленно запасенной энергии при изготовлении оборудования и/или содержащейся в нем и определяющей его энергетический потенциал для последующего использования по назначению в регламентированных режимах функционирования.

3.1.16 экономичность сбережения тепловой энергии изделием (сооружением, строительным материалом, конструкцией) при использовании: Характеристика суммарного количества потерь при передаче тепловой энергии в регламентированных условиях применения.

1 Эта группа характеризует свойства строительного материала, конструкции, сооружения сберегать (или терять) тепловую энергию в регламентированных условиях применения.

2 К этой группе характеристик относят также показатели теплопроводности (теплосопротивления) ограждающих (строительных) конструкций.

3.1.17 теплотворная способность углеводородных топлив: Суммарное количество энергии, которой обладают природные углеводородные топлива, высвобождая ее в регламентированных условиях.

3.1.18 норматив расхода топливно-энергетических ресурсов (технический норматив): Научно и технически обоснованная величина нормы расхода энергии (топлива), устанавливаемая в нормативной и технологической документации на конкретное изделие, характеризующая предельно допустимое значение потребления энергии (топлива) на единицу выпускаемой продукции или в регламентированных условиях использования энергетических ресурсов.

3.1.19 нормативный энергетический эквивалент; НЭЭ: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого энергоресурса (топлива, тепловой, электрической энергии).

3.1.20 топливно-энергетический эквивалент; ТЭЭ: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого топливно-энергетического ресурса.

3.1.21 удельная теплота сгорания (топлива): Суммарное количество энергии, высвобождаемое в регламентированных условиях сжигания топлива.

3.2 В настоящем стандарте применяют следующие сокращения:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *