Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости ΠΈ Π² пространствС

БистСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” способ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ»ΠΈ Ρ‚Π΅Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ чисСл ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… символов. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ называСтся ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² пространствС, Π½Π° плоскости ΠΈΠ»ΠΈ Π½Π° прямой.

Π’ΠΎΠΎΠ±Ρ‰Π΅ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π½Π° любой вкус β€” Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² пространствС Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ двиТСния Ρ‚Π΅Π»Π°. Если эта траСктория прямая, Ρ‚ΠΎ для Π½Π΅Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ линСйная систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” ΠΎΠ΄Π½Π° ось ОΠ₯, Π³Π΄Π΅ 0 β€” Π½Π°Ρ‡Π°Π»ΠΎ отсчСта. Для двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° плоскости Π½ΡƒΠΆΠ½Ρ‹ Π΄Π²Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси. Π˜Ρ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΏΠΎΠ΄ Π»ΡŽΠ±Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ. Если этот ΡƒΠ³ΠΎΠ» прямой, Ρ‚ΠΎ ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ с ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмой ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’Π°ΠΊΠΈΠ΅ систСмы Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ Π² Ρ‡Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ²ΡˆΠ΅Π³ΠΎ ΠΈΡ… французского ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠ° Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π°. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° оси X называСтся абсциссой, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π½Π° оси Y β€” ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ, Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π½Π° оси Z (Ссли систСма строится Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС) β€” Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΠΉ. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π»Π΅Π³ΠΊΠΎ ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ для пространства любой размСрности, поэтому ΠΎΠ½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎ примСняСтся.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π•ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ общая Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма, которая Π½Π΅ являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ.

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌΠΈ осями ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ 90Β° β€” Ρ‚Π°ΠΊΡƒΡŽ систСму Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ. Π•Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, для описания полоТСния Π°Ρ‚ΠΎΠΌΠΎΠ² Π² кристалличСской Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ΅.

Для описания полоТСния Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° плоскости ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° ΠΈ двухосная систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π³Π΄Π΅ ΠΎΠ΄Π½Π° ΠΈΠ· осСй вращаСтся Π²ΠΎΠΊΡ€ΡƒΠ³ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, всС врСмя указывая Π½Π° ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ плоскости. Вакая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ называСтся полярной.

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ сфСричСскиС систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° сфСрС. НапримСр, гСографичСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: ΡˆΠΈΡ€ΠΎΡ‚Π°, Π΄ΠΎΠ»Π³ΠΎΡ‚Π° ΠΈ высота Π½Π°Π΄ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ (ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ моря, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ).

НСбСсныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ астрономии ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ нСбСсных Ρ‚Π΅Π» опрСдСляСтся сфСричСскими ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ прямым восхоТдСниСм ΠΈ склонСниСм. БистСмы нСбСсных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ отсчСтной ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ β€” Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта. Если это ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°, Ρ‚ΠΎ систСма называСтся Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ, Ссли экватора, Ρ‚ΠΎ ΡΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ, Ссли эклиптики, Ρ‚ΠΎ галактичСской.

Ѐилософ Π² ΠΏΠ΅Ρ‡ΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π Π΅Π½Π΅ Π”Π΅ΠΊΠ°Ρ€Ρ‚, Π² Ρ‡Π΅ΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π°Π·Π²Π°Π½Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π² молодости слуТил Π² Π°Ρ€ΠΌΠΈΠΈ. ΠžΠ΄Π½Π°ΠΆΠ΄Ρ‹ Π² Π·Π°Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠΉ Π΄Π΅Ρ€Π΅Π²Π½Π΅ ΠΎΠ½, спасаясь ΠΎΡ‚ Ρ…ΠΎΠ»ΠΎΠ΄Π°, забрался Π² ΠΏΠ΅Ρ‡ΡŒ ΠΈ просидСл Ρ‚Π°ΠΌ Ρ†Π΅Π»Ρ‹ΠΉ дСнь. Когда Π²Π΅Ρ‡Π΅Ρ€ΠΎΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ выбрался Π½Π°Ρ€ΡƒΠΆΡƒ, Π΅Π³ΠΎ философия, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ½ ΠΏΠΎΠ·ΠΆΠ΅ описывал Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, Π±Ρ‹Π»Π° ΡƒΠΆΠ΅ Π³ΠΎΡ‚ΠΎΠ²Π°. Π”Π΅ΠΊΠ°Ρ€Ρ‚ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π», Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² ΠΏΠ΅Ρ‡ΠΈ Π΅ΠΌΡƒ ΠΏΡ€ΠΈΡˆΠ»ΠΈ Π² Π³ΠΎΠ»ΠΎΠ²Ρƒ Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚Ρ‹Π΅ слова: Β«ΠœΡ‹ΡΠ»ΡŽ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΒ».

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ПолоТСниС ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС

Π£Ρ€ΠΎΠΊ 2. Π€ΠΈΠ·ΠΈΠΊΠ° 10 класс

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΈΠ»ΠΈ Ρ€Π°Π·Π΄Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊ ΡƒΡ‡Π΅Π½ΠΈΠΊΠ°ΠΌ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ доступ ΠΊ этому ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°, Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π² Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚, ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π² Π² ΠΊΠ°Ρ‚Π°Π»ΠΎΠ³Π΅.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ нСвСроятныС возмоТности

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ° «ΠŸΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС»

ΠœΡ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ Ρ‚Π΅ΠΌΡƒ классичСской ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ ΠΡŒΡŽΡ‚ΠΎΠ½Π°. ΠœΠ΅Ρ…Π°Π½ΠΈΠΊΠ° дСлится Π½Π° Π΄Π²Π° основных Ρ€Π°Π·Π΄Π΅Π»Π°: ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°. ΠœΡ‹ Π½Π°Ρ‡Π½Ρ‘ΠΌ с изучСния ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈΠ·ΡƒΡ‡Π°Π΅Ρ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π», способы описания этого двиТСния, Π° Ρ‚Π°ΠΊΠΆΠ΅, Π΅Π³ΠΎ характСристики.

ΠžΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π΅Ρ‚ Π±Π°Π±ΠΎΡ‡ΠΊΠΈ матСматичСски β€” это ΠΊΡ€Π°ΠΉΠ½Π΅ слоТная Π·Π°Π΄Π°Ρ‡Π°. Но Π΅ΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΠΏΡ€ΠΎΡ‰Π΅: Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π”ΠΎΠ±Π°Π²ΠΈΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, Ρ‡Ρ‚ΠΎ эта Ρ‚ΠΎΡ‡ΠΊΠ° двигаСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΈ прямолинСйно. Π’ΠΎΠ³Π΄Π°, ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΅Ρ‘ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ Ρ‚Π°ΠΊ ΡƒΠΆ слоТно. ИмСнно с Ρ‚Π°ΠΊΠΈΡ… ΠΈΠ΄Π΅Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈ слСдуСт Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’Π΅Π΄ΡŒ Ссли ΠΌΡ‹ смоТСм ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ ΠΌΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ смоТСм ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ самого Ρ‚Π΅Π»Π°.

Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π½ΡƒΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ систСму отсчёта. БистСма отсчёта состоит ΠΈΠ· Ρ‚Π΅Π»Π° отсчёта, систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ счётчика Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π’Π΅Π»ΠΎ отсчёта β€” это физичСскоС Ρ‚Π΅Π»ΠΎ, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ задаётся ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΠΎΠ½ΡΡ‚ΡŒ это довольно просто. На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π΄Π΅Ρ€Π΅Π²ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

На ΠΊΠ°ΠΊΠΎΠΌ расстоянии находится это Π΄Π΅Ρ€Π΅Π²ΠΎ? На ΠΊΠ°ΠΊΠΎΠΌ расстоянии ΠΎΡ‚ Ρ‡Π΅Π³ΠΎ? β€” спроситС Π²Ρ‹. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΡƒ отсчСта. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π±Π΅Π»Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° ΠΊΠ°ΠΌΠ½Π΅, Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ„Π»Π°ΠΆΠΎΠΊ Π½Π° за́мкС. Π’ зависимости ΠΎΡ‚ этого Π²Ρ‹Π±ΠΎΡ€Π°, ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° вопрос Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ. НСобходимо Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ ΠΊΠ°ΠΊΡƒΡŽ-Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΡƒ Π·Π° Ρ‚ΠΎΡ‡ΠΊΡƒ отсчёта, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π° ноль. Π‘ΠΊΠ°ΠΆΠ΅ΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ Π·Π° ноль Ρ†Π΅Π½Ρ‚Ρ€ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π”Π°Π»Π΅Π΅, ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ полоТСния Ρ‚Π΅Π». Π’Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈ, исходя ΠΈΠ· этого опрСдСляСм полоТСния Ρ‚Π΅Π». Π­Ρ‚ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ задаётся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. НапримСр, Ρ‚ΠΎΡ‡ΠΊΠ° А ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΈ минус Ρ‚Ρ€ΠΈ, Π° Ρ‚ΠΎΡ‡ΠΊΠ° Π‘ β€” Ρ‚Ρ€ΠΈ ΠΈ Π΄Π²Π°. Π’Π°ΠΊΠΆΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ соСдиняСт Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ r ΠΈ, ΠΊΠ°ΠΊ ΠΈ любой Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π»ΠΈΠ½Ρƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅. Π”Π»ΠΈΠ½ΠΎΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ являСтся гСомСтричСская сумма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΌΡ‹ вычисляСм Π΄Π»ΠΈΠ½Ρƒ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°. Π’ΠΎ Π΅ΡΡ‚ΡŒ, Π΄Π»ΠΈΠ½Π° радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ B Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ любого Π²Π΅ΠΊΡ‚ΠΎΡ€Π° находят с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ этого Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎ ΠΆΠ΅ Ρ‚Π°ΠΊΠΎΠ΅ проСкция? Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ точкис Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ А ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ B, находящийся Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Из Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ B опустим пСрпСндикуляры Π½Π° ось икс. Π”Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° А1 B1 β€” это ΠΈ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° цэ Π½Π° ось x. Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΈΠΌ ΠΆΠ΅ способом находится проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ½Π° ось y. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· построСния: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Аналогично ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π½Π° ось y: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ..

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ось β€” это алгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. Π•Ρ‘ Π·Π½Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ссли, двигаясь ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π΄ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, Π½Π°Π΄ΠΎ ΠΈΠ΄Ρ‚ΠΈ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚ΠΎ проСкция ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ, Π° Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС β€” ΠΎΠ½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

Π˜Π½Π°Ρ‡Π΅ это ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ составляСт острый ΡƒΠ³ΠΎΠ» с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ собираСмся ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ, Ρ‚ΠΎ проСкция Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Π° Ссли ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси β€” Ρ‚ΡƒΠΏΠΎΠΉ, Ρ‚ΠΎ проСкция Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

НСтрудно Π΄ΠΎΠ³Π°Π΄Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрпСндикулярСн оси, Ρ‚ΠΎ Π΅Π³ΠΎ проСкция Π½Π° эту ось Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Аналогично, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ оси, Ρ‚ΠΎ Π΅Π³ΠΎ проСкция Π½Π° эту ось Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС, Π° Π½Π΅ Π½Π° плоскости. Как Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, Ρƒ Π΅ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ пространствСнных измСрСния, поэтому, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Ρ‚Ρ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΌΡ‹ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Ρ€Π°Π½Π΅Π΅, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° плоскости, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΡ‚ этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ z ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси Z.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ПолоТСниС Ρ‚Π°ΠΊΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π•Π³ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСомСтричСской суммы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡.

Π—Π°Π΄Π°Ρ‡Π° 1. Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ N (1;3;7), постройтС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π—Π°Π΄Π°Ρ‡Π° 2. Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ N (1;3;7), постройтС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π—Π°Π΄Π°Ρ‡Π° 3. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ½Π° оси x ΠΈ y ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΈΡ… числовыС значСния, Ссли Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠΈ осью x составляСт 30Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π—Π°Π΄Π°Π½ΠΈΠ΅ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ двумя способами: ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ.

ΠŸΡ€ΠΈ Π·Π°Π΄Π°Π½ΠΈΠΈ двиТСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ способом с Ρ‚Π΅Π»ΠΎΠΌ отсчСта ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠ°ΠΊΡƒΡŽ-Π»ΠΈΠ±ΠΎ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΡƒΡŽ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ М Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π΄Π°Π½ΠΎ Π² Ρ‚ΠΎΠΌ случаС, Ссли Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ извСстны, ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π­Ρ‚ΠΈ зависимости Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ уравнСниями двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…. Они Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Если Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся, ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ всС врСмя Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒΡΡ двумя уравнСниями двиТСния: x = x(t), y = y(t).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Допустим, М – двиТущаяся Ρ‚ΠΎΡ‡ΠΊΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ‚Π΅Π»Π° отсчСта А. Π’ Ρ‚Π΅Π»Π΅ А Π² качСствС Ρ‚ΠΎΡ‡ΠΊΠΈ отсчСта Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ О ΠΈ построим Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ называСтся радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ М.

Радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ – это Π²Π΅ΠΊΡ‚ΠΎΡ€, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π½Π°Ρ‡Π°Π»ΠΎ отсчСта с ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Когда Ρ‚ΠΎΡ‡ΠΊΠ° М двиТСтся, радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ измСняСтся Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, поэтому сущСствуСт нСкоторая Π²Π΅ΠΊΡ‚ΠΎΡ€-функция Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ точкиЗная эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠΈ Ρ‚Π΅ΠΌ самым Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Ѐункция Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ точкиназываСтся Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ) двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ М.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ΠΎΡ‡ΠΊΠ° задаСтся радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, Ссли извСстны Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Π° (ΠΌΠΎΠ΄ΡƒΠ»ΡŒ) ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² пространствС, Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами – значСния Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ rx, ry, rz Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ OX, OY ΠΈ OZ, ΠΈΠ»ΠΈ ΡƒΠ³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ рассмотрСнии двиТСния Π½Π° плоскости:

Π—Π΄Π΅ΡΡŒ Π·Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠΌΡ‹ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π° rx ΠΈ ry ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΅Π³ΠΎ проСкциями Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, всС Ρ‚Ρ€ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ скалярны, x ΠΈ y – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ А.

Из этих ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ способами задания полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ сущСствуСт связь.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС прСдставим с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ пространствСнного ΠΌΠ°ΠΊΠ΅Ρ‚Π°. ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹ Π² пространствС Ρ‚ΠΎΡ‡ΠΊΠ° A ΠΈ Ρ‚Ρ€ΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ПолоТСниС Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС опрСдСляСтся трСмя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (x, y, z), ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ расстояний, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½Π° ΡƒΠ΄Π°Π»Π΅Π½Π° ΠΎΡ‚ плоскостСй ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ эти расстояния, достаточно Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ A провСсти прямыС, пСрпСндикулярныС ΠΊ плоскостям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ A`, A», A»` встрСчи этих прямых с плоскостями ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² [AA`], [AA»], [AA»`], ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠΊΠ°ΠΆΡƒΡ‚ соотвСтствСнно Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚Ρ‹ z, ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ y, абсциссы x Ρ‚ΠΎΡ‡ΠΊΠΈ A.

ΠŸΡ€ΡΠΌΡ‹Π΅ (AA` βŠ₯ H), (AA» βŠ₯ V), (AA»` βŠ₯ W) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ прямыми ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π»ΡƒΡ‡Π°ΠΌΠΈ. ΠŸΡ€ΡΠΌΡƒΡŽ (AA`), ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ A Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ прямой (Π»ΡƒΡ‡ΠΎΠΌ). ΠŸΡ€ΡΠΌΡƒΡŽ (AA») ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ A Π½Π° Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ прямой (Π»ΡƒΡ‡ΠΎΠΌ). ΠŸΡ€ΡΠΌΡƒΡŽ (AA»`) ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ A Π½Π° ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎ-ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ прямой (Π»ΡƒΡ‡ΠΎΠΌ). Π”Π²Π΅ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ прямыС, проходящиС Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ A, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΅Ρ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ проСкциями Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ установлСна с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π²ΡƒΡ… ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² [A`Ay] ΠΈ [AyA»`] ΠΈ ΡΠΎΠΏΡ€ΡΠ³Π°ΡŽΡ‰Π΅ΠΉ ΠΈΡ… Π΄ΡƒΠ³ΠΈ окруТности, с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ пСрСсСчСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½ΠΎΠΉ связью ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для нахоТдСния Π½Π΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰Π΅ΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ»ΠΈ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ.

ПолоТСниС ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ (Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ) ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ (ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ) ΠΈ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ проСкциям ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ ΠΈ Π±Π΅Π· провСдСния Π΄ΡƒΠ³ΠΈ окруТности. Π’ этом случаС связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ проСкциями ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ установлСна с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΠΎΠΌΠ°Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ A`,Ao,A»` с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Ao Π½Π° биссСктрисС ΡƒΠ³Π»Π°, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ осями y. БиссСктрису O,Ao,A»` Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ постоянной прямой ko ΡΠΏΡŽΡ€Π° МонТа.

Из записи слСдуСт: 1. Π’ΠΎΡ‡ΠΊΠ° Π² пространствС ΡƒΠ΄Π°Π»Π΅Π½Π°: Π°) ΠΎΡ‚ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ W Π½Π° Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π½Π° ΠΊΠ°ΠΊΡƒΡŽ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ проСкция этой Ρ‚ΠΎΡ‡ΠΊΠΈ A` ΡƒΠ΄Π°Π»Π΅Π½Π° ΠΎΡ‚ оси y (ΠΈΠ»ΠΈ ΠΆΠ΅ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ проСкция A» ΠΎΡ‚ оси z); Π±) ΠΎΡ‚ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ V Π½Π° Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π½Π° ΠΊΠ°ΠΊΡƒΡŽ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ проСкция этой Ρ‚ΠΎΡ‡ΠΊΠΈ A` ΡƒΠ΄Π°Π»Π΅Π½Π° ΠΎΡ‚ оси x (ΠΈΠ»ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Π°Ρ проСкция A»` ΠΎΡ‚ оси z); Π²) ΠΎΡ‚ плоскости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ H Π½Π° Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π½Π° ΠΊΠ°ΠΊΡƒΡŽ Π΅Π΅ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ проСкция ΡƒΠ΄Π°Π»Π΅Π½Π° ΠΎΡ‚ оси x (ΠΈΠ»ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Π°Ρ проСкция A»` ΠΎΡ‚ оси y).

Если ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π½Π° ΡΠΏΡŽΡ€Π΅ прямыС, пСрпСндикулярныС ΠΊ осям ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π·Π½ΠΎΠΈΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ линиями связи (ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ связи), Ρ‚ΠΎ ΠΏΡƒΠ½ΠΊΡ‚ 3. Π°) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ сформулирован ΠΈΠ½Π°Ρ‡Π΅: Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΈ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ любой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ связи.

Π±) Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ любой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠΌΡƒ пСрпСндикуляру (ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ связи) ΠΊ оси y; Π²) Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ любой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠΌΡƒ пСрпСндикуляру (ΠΎΠ΄Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ связи) ΠΊ оси z.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ПолоТСниС ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС

Π£Ρ€ΠΎΠΊ 2. Π€ΠΈΠ·ΠΈΠΊΠ° 10 класс

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΈΠ»ΠΈ Ρ€Π°Π·Π΄Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊ ΡƒΡ‡Π΅Π½ΠΈΠΊΠ°ΠΌ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ доступ ΠΊ этому ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡƒΡ€ΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°, Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π² Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ‚, ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π² Π² ΠΊΠ°Ρ‚Π°Π»ΠΎΠ³Π΅.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ нСвСроятныС возмоТности

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ° «ΠŸΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС»

ΠœΡ‹ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ Ρ‚Π΅ΠΌΡƒ классичСской ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ ΠΡŒΡŽΡ‚ΠΎΠ½Π°. ΠœΠ΅Ρ…Π°Π½ΠΈΠΊΠ° дСлится Π½Π° Π΄Π²Π° основных Ρ€Π°Π·Π΄Π΅Π»Π°: ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°. ΠœΡ‹ Π½Π°Ρ‡Π½Ρ‘ΠΌ с изучСния ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ΠšΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠΈΠ·ΡƒΡ‡Π°Π΅Ρ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π», способы описания этого двиТСния, Π° Ρ‚Π°ΠΊΠΆΠ΅, Π΅Π³ΠΎ характСристики.

ΠžΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π΅Ρ‚ Π±Π°Π±ΠΎΡ‡ΠΊΠΈ матСматичСски β€” это ΠΊΡ€Π°ΠΉΠ½Π΅ слоТная Π·Π°Π΄Π°Ρ‡Π°. Но Π΅ΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΠΏΡ€ΠΎΡ‰Π΅: Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π”ΠΎΠ±Π°Π²ΠΈΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, Ρ‡Ρ‚ΠΎ эта Ρ‚ΠΎΡ‡ΠΊΠ° двигаСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΈ прямолинСйно. Π’ΠΎΠ³Π΄Π°, ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΅Ρ‘ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ Ρ‚Π°ΠΊ ΡƒΠΆ слоТно. ИмСнно с Ρ‚Π°ΠΊΠΈΡ… ΠΈΠ΄Π΅Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈ слСдуСт Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ. Π’Π΅Π΄ΡŒ Ссли ΠΌΡ‹ смоТСм ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π°, Ρ‚ΠΎ ΠΌΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ смоТСм ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ самого Ρ‚Π΅Π»Π°.

Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π½ΡƒΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ систСму отсчёта. БистСма отсчёта состоит ΠΈΠ· Ρ‚Π΅Π»Π° отсчёта, систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ счётчика Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π’Π΅Π»ΠΎ отсчёта β€” это физичСскоС Ρ‚Π΅Π»ΠΎ, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ задаётся ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΠΎΠ½ΡΡ‚ΡŒ это довольно просто. На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π΄Π΅Ρ€Π΅Π²ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

На ΠΊΠ°ΠΊΠΎΠΌ расстоянии находится это Π΄Π΅Ρ€Π΅Π²ΠΎ? На ΠΊΠ°ΠΊΠΎΠΌ расстоянии ΠΎΡ‚ Ρ‡Π΅Π³ΠΎ? β€” спроситС Π²Ρ‹. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΡƒ отсчСта. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π±Π΅Π»Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π½Π° ΠΊΠ°ΠΌΠ½Π΅, Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ„Π»Π°ΠΆΠΎΠΊ Π½Π° за́мкС. Π’ зависимости ΠΎΡ‚ этого Π²Ρ‹Π±ΠΎΡ€Π°, ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° вопрос Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ. НСобходимо Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ ΠΊΠ°ΠΊΡƒΡŽ-Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΡƒ Π·Π° Ρ‚ΠΎΡ‡ΠΊΡƒ отсчёта, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π° ноль. Π‘ΠΊΠ°ΠΆΠ΅ΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ Π·Π° ноль Ρ†Π΅Π½Ρ‚Ρ€ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π”Π°Π»Π΅Π΅, ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ полоТСния Ρ‚Π΅Π». Π’Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈ, исходя ΠΈΠ· этого опрСдСляСм полоТСния Ρ‚Π΅Π». Π­Ρ‚ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ задаётся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. НапримСр, Ρ‚ΠΎΡ‡ΠΊΠ° А ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΈ минус Ρ‚Ρ€ΠΈ, Π° Ρ‚ΠΎΡ‡ΠΊΠ° Π‘ β€” Ρ‚Ρ€ΠΈ ΠΈ Π΄Π²Π°. Π’Π°ΠΊΠΆΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ соСдиняСт Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ обозначаСтся латинской Π±ΡƒΠΊΠ²ΠΎΠΉ r ΠΈ, ΠΊΠ°ΠΊ ΠΈ любой Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π»ΠΈΠ½Ρƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅. Π”Π»ΠΈΠ½ΠΎΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ являСтся гСомСтричСская сумма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΌΡ‹ вычисляСм Π΄Π»ΠΈΠ½Ρƒ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°. Π’ΠΎ Π΅ΡΡ‚ΡŒ, Π΄Π»ΠΈΠ½Π° радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ B Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ любого Π²Π΅ΠΊΡ‚ΠΎΡ€Π° находят с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ этого Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎ ΠΆΠ΅ Ρ‚Π°ΠΊΠΎΠ΅ проСкция? Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ точкис Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ А ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ B, находящийся Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Из Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ B опустим пСрпСндикуляры Π½Π° ось икс. Π”Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° А1 B1 β€” это ΠΈ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° цэ Π½Π° ось x. Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΈΠΌ ΠΆΠ΅ способом находится проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ½Π° ось y. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· построСния: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Аналогично ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π½Π° ось y: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ..

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ось β€” это алгСбраичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°. Π•Ρ‘ Π·Π½Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ссли, двигаясь ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π΄ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, Π½Π°Π΄ΠΎ ΠΈΠ΄Ρ‚ΠΈ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Ρ‚ΠΎ проСкция ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ, Π° Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС β€” ΠΎΠ½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

Π˜Π½Π°Ρ‡Π΅ это ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ составляСт острый ΡƒΠ³ΠΎΠ» с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ собираСмся ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ, Ρ‚ΠΎ проСкция Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Π° Ссли ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ оси β€” Ρ‚ΡƒΠΏΠΎΠΉ, Ρ‚ΠΎ проСкция Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

НСтрудно Π΄ΠΎΠ³Π°Π΄Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрпСндикулярСн оси, Ρ‚ΠΎ Π΅Π³ΠΎ проСкция Π½Π° эту ось Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Аналогично, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ оси, Ρ‚ΠΎ Π΅Π³ΠΎ проСкция Π½Π° эту ось Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС, Π° Π½Π΅ Π½Π° плоскости. Как Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, Ρƒ Π΅ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ пространствСнных измСрСния, поэтому, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π°Π΄Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² пространствС Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Ρ‚Ρ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΌΡ‹ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Ρ€Π°Π½Π΅Π΅, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° плоскости, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΡ‚ этой Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ z ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси Z.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

ПолоТСниС Ρ‚Π°ΠΊΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π•Π³ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСомСтричСской суммы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡.

Π—Π°Π΄Π°Ρ‡Π° 1. Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ N (1;3;7), постройтС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π—Π°Π΄Π°Ρ‡Π° 2. Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ N (1;3;7), постройтС ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ

Π—Π°Π΄Π°Ρ‡Π° 3. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠ½Π° оси x ΠΈ y ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΈΡ… числовыС значСния, Ссли Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈΠΈ осью x составляСт 30Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *