Что такое равносильное преобразование
Равносильные уравнения. Равносильные преобразования уравнений
Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
Основные равносильные преобразования уравнений:
Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.
Применение всех формул и свойств, которые есть в математике.
Равносильные уравнения и уравнения следствия
Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:
Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)
Перенесем оба слагаемых из правой части в левую.
Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.
Сверяем корни с ОДЗ и исключаем неподходящие.
\(↑\) не подходит под ОДЗ
Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.
В пункте a) применялось равносильное преобразование 1.
В пункте b) перешли к уравнению следствию, так как \(\sqrt
В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;
В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;
В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;
В пункте f) перешли от вида \(a^
Равносильные уравнения
Два или более уравнений называются равносильными, если они имеют одни и те же корни. Например, уравнения:
равносильные, потому что имеют одни и те же корни (2 и 1 — это можно проверить подстановкой).
Уравнения, не имеющие корней, также считаются равносильными.
Преобразование уравнений
Если одно уравнение заменяется другим уравнением, равносильным данному, то такая замена называется преобразованием уравнения. Например, уравнение
можно преобразовать в такое:
Если одно уравнение заменяется другим, равносильным данному и при этом более простым, то такое преобразование называется упрощением уравнения. Например, упростим следующее уравнение:
заменив его равносильным уравнением
Все преобразования уравнений основаны на двух свойствах равенств, и следствиях, которые вытекают из данных свойств.
Если к обеим частям уравнения прибавить или отнять одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.
Из данного свойства можно вывести три следствия:
Возьмём уравнение x + 13 = 10 + 13. Отняв от обеих частей по 13, получим
то есть член x перешёл в другую часть с обратным знаком.
И, учитывая, что части любого равенства ( в том числе и любого уравнения) можно менять местами, то, поменяв левую часть с правой, получим:
то есть получилось, что мы просто заменили знаки всех членов уравнения на противоположные.
Если обе части уравнения умножить или разделить на одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.
Рассмотрим уравнение 3x = 12. Разделив обе части уравнения на число 3:
получим уравнение x = 4. Если в уравнение 3x = 12 вместо x подставить число 4, то можно удостовериться, что, разделив обе части уравнения на 3, мы не только получили равносильное уравнение, но и нашли его корень.
Из данного свойства можно вывести два следствия:
Возьмём уравнение 16x + 8 = 40. Разделив все члены на общий множитель 8, получим:
После приведения всех членов к общему знаменателю получим:
Теперь, умножив все члены уравнения на 4, или, что то же самое, просто отбросив знаменатель, получим:
Что такое равносильное преобразование
Слово в алфавите логики высказываний называется формулой, если оно удовлетворяет следующему определению:
1) любая высказывательная переменная – формула;
3) только те слова являются формулами, для которых это следует из 1) и 2).
Например: или
. Скобки указывают порядок выполнения действий.
Скобки в формулах можно опускать, придерживаясь следующего порядка выполнения действий: коньюнкция, дизьюнкция, импликация и эквиваленция.
Логическое значение формулы полностью определяется логическими значениями входящих в нее элементарных высказываний.
При x = 1, y = 1, z = 0 формула
Логическое значение формулы изменяется в зависимости от изменений значений элементарных высказываний, входящих в формулу. Все возможные логические значения формулы могут быть описаны полностью с помощью таблицы истинности.
Таблица истинности логических значений формулы будет следующая:
Если формула содержит n элементарных высказываний, то она принимает 2 n значений. Таблица истинности будет содержать 2 n строк.
Две формулы алгебры логики A и B называются равносильными, если они принимают одинаковые логические значения на любом наборе значений, входящих в формулы элементарных высказываний.
Следующие формулы являются равносильными:
Формула А называется тождественно истинной (или тавтологией ), если она принимает значение 1 при всех значениях входящих в нее переменных.
Следующие формулы являются тавтологиями: ,
Формула является тождественно ложной.
Отношение равносильности обладает следующими свойствами: оно рефлексивно, симметрично и транзитивно.
Между понятиями равносильности и эквивалентности существует следующая связь: если формулы А и В равносильны, то формула – тавтология, и обратно, если формула
– тавтология, то формулы А и В равносильны.
Равносильности алгебры логики используются для того, чтобы любую формулу алгебры логики можно заменить равносильной ей формулой.
Важнейшие равносильности алгебры логики можно разбить на три группы.
1. Основные равносильности
Пусть А ≡ при x = 1, значение А = 1, при х = 0, значение А = 0. Итак во всех случаях значения формулы А совпадают со значениями х, следовательно, А ≡ х.
2. Равносильности, выражающие одни логические операции через другие
Замечание. Формулы 5 и 6 получаются из 3 и 4, если от обеих частей последних взять отрицания и воспользоваться законом снятия двойного отрицания.
Докажем формулы 1–4.
1) при одинаковых логических значениях x и y формулы ,
и
– истинны, следовательно, истинной будет и коньюнкция
т. е. обе части равносильности имеют одинаковые истинные значения.
2) пусть хотя бы одна из переменных x или y принимает значение ложь, тогда тоже ложь, а
– истина. В то же время отрицание хотя бы одной из переменных будет истинным, следовательно, будет истиной и дизьюнкция
.
Следовательно, во всех случаях обе части равносильности 3 принимают одинаковые логические значения.
Аналогично доказываются равносильности 2 и 4.
Из равносильностей группы 2 следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: коньюнкцию и отрицание или дизьюнкцию и отрицание.
3. Равносильности, выражающие основные законы алгебры логики
– комм утативность коньюнкции и дизьюнкции.
При х = 1, формулы ,
и
будут истинны, тогда и
– тоже истинна.
При х = 0, ≡
,
≡
≡
следовательно,
Таким образом, обе части формулы 6 равносильны одной и той же формуле и поэтому принимают одинаковые логические значения. Что и требовалось доказать.
Равносильности 3-ей группы выражают основные законы алгебры логики: коммутативность, ассоциативность и дистрибутивность (относительно логических операций – коньюнкции и дизьюнкции). Эти же законы имеют место в алгебре чисел. Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел, т. е.
1) раскрытие скобок;
2) заключение в скобках;
3) вынесения за скобки общего множителя.
Кроме этих преобразований над формулами алгебры логики можно производить и преобразования, основанные на использовании равносильностей.
Равносильные преобразования формул используют
1) для доказательства равносильностей,
2) для приведения формул к заданному виду,
3) для упрощения формул.
Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций коньюнкции и дизьюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.
1. Доказать равносильность
2. Упростить формулу
3. Доказать тождественную истинность формулы
Равносильные уравнения, преобразование уравнений
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.
Решение линейных неравенств
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Линейные неравенства — это неравенства вида:
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.
Типы неравенств
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
Если же а b и c > d, то а + c > b + d.
Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа
Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.
Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Правила линейных неравенств
Решение линейных неравенств
Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.
Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.
Определение 3. Линейные неравенства с одной переменной x выглядят так:
где a и b — действительные числа. А на месте x может быть обычное число.
Равносильные преобразования
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов это:
Если a ≠ 0, тогда решением будет единственный корень — х₀;
Для этого найдем значения функции в точках на промежутке;
Как решаем:
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
Ответ: (−∞, −√3 : 5) или x