Что такое разность прогрессии

Арифметическая прогрессия свойства и формулы

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение числовой последовательности

Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.

Последовательности можно задавать разными способами:

«Последовательность простых чисел: 4, 6, 10, 19, 21, 33. »

Последовательность yn = C называют постоянной или стационарной.

Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.

Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.

Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.

Свойства числовых последовательностей:

Возрастающие и убывающие последовательности называют монотонными последовательностями.

Пример числовой последовательности выглядит так:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.

N-ный член алгебраической последовательности — это число с порядковым номером n.

Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2. a10. an.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

N-ый член последовательности можно задать формулой. Например:

Определение арифметической прогрессии

Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.

Рассмотрим основные определения и как найти арифметическую прогрессию.

Арифметическая прогрессия — это числовая последовательность a1, a2. an. для которой для каждого натурального n выполняется равенство:

an+1= an + d, где d — это разность арифметической прогрессии.

Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d.

Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Арифметическая прогрессия бывает трех видов:

Пример: последовательность чисел 11, 14, 17, 20, 23. — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0.

Свойство арифметической прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Переведем с языка формул на русский: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Что как раз объясняет название «арифметическая» прогрессия.

Рассмотрим пример арифметической прогрессии.

Дано: арифметическая прогрессия (an), где a1 = 0 и d = 2.

Найти: первые пять членов прогрессии и десятый член прогрессии.

Решение арифметической прогрессии:

По условиям задачи n = 10, подставляем в формулу:

Формулы арифметической прогрессии

В 9 классе проходят все формулы арифметической прогрессии. Давайте узнаем, какими способами ее можно задать:

Сумма первых n членов арифметической прогрессии (аn) обозначается Sn:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Формулы нахождения суммы n членов арифметической прогрессии:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии
Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Чтобы быстрее запомнить формулы можно использовать такую табличку с основными определениями:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Формула n-го члена арифметической прогрессии

Из определения арифметической прогрессии следует, что равенство истинно:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Значит, Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член.

Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность.

Доказательство формулы n-го члена арифметической прогрессии

Формулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции.

Пусть дано: Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессииЧто такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Нужно доказать: Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Действительно, Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Согласно принципу математической индукции формула Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессииверна для любого натурального числа.

Геометрическая прогрессия

Геометрическая прогрессия — это последовательность (bn), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число q.

Если последовательность (bn) является геометрической прогрессией, то для любого натурального значения n справедлива зависимость:

bn+1 = bn * q, где q — знаменатель геометрической прогрессии

Если в геометрической прогрессии (bn) известен первый член b1 и знаменатель q, то можно найти любой член прогрессии:

Общий член геометрической прогрессии bn можно вычислить при помощи формулы:

Пример 1. 2, 6, 18, 54,… — геометрическая прогрессия b = 2, q = 3.

Пример 3. 7, 7, 7, 7,… — геометрическая прогрессия b = 7, q = 1.

Источник

Как найти разность арифметической прогрессии

Тема «прогрессия арифметическая» изучается в общем курсе алгебры в школах в 9 классе. Эта тема является важной для дальнейшего углубленного изучения математики числовых рядов. В данной статье познакомимся с прогрессией арифметической, ее разностью, а также с типичными задачами, с которыми могут столкнуться школьники.

Понятие о прогрессии алгебраической

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Числовая прогрессия представляет собой последовательность чисел, в которой каждый последующий элемент можно получить из предыдущего, если применить некоторый математический закон. Известно два простых вида прогрессии: геометрическая и арифметическая, которую называют также алгебраической. Остановимся на ней подробнее.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Вам будет интересно: Как найти среднее арифметическое и среднее геометрическое чисел?

Представим себе некоторое рациональное число, обозначим его символом a1, где индекс указывает его порядковый номер в рассматриваемом ряду. Добавим к a1 некоторое другое число, обозначим его d. Тогда второй элемент ряда можно отразить следующим образом: a2 = a1+d. Теперь добавим d еще раз, получим: a3 = a2+d. Продолжая эту математическую операцию, можно получить целый ряд чисел, который будет называться прогрессией арифметической.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Вам будет интересно: Причастия совершенного и несовершенного вида. Правила использования

Как можно понять из изложенного выше, чтобы найти n-ый элемент этой последовательности, необходимо воспользоваться формулой: an = a1 + (n-1)*d. Действительно, подставляя n=1 в выражение, мы получим a1 = a1, если n = 2, тогда из формулы следует: a2 = a1 + 1*d, и так далее.

Формулы разности прогрессии арифметической

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Из приведенного выше определения рассматриваемого ряда чисел следует, что для его определения необходимо знать два числа: a1 и d. Последнее называется разностью этой прогрессии. Оно однозначно определяет поведение всего ряда. Действительно, если d будет положительным, то числовой ряд будет постоянно возрастать, наоборот, в случае d отрицательного, будет происходить возрастание чисел в ряду лишь по модулю, абсолютное же их значение будет уменьшаться с ростом номера n.

Чему равна разность прогрессии арифметической? Рассмотрим две основные формулы, которые используются для вычисления этой величины:

Эти две основные формулы используются для решения любых задач на нахождение разности прогрессии. Однако существует еще одна формула, о которой также необходимо знать.

Сумма первых элементов

Формула, с помощью которой можно определить сумму любого количества членов прогрессии алгебраической, согласно историческим свидетельствам, была впервые получена «принцем» математики XVIII века Карлом Гауссом. Немецкий ученый, еще будучи мальчиком в начальных классах деревенской школы, заметил, что для того, чтобы сложить натуральные числа в ряду от 1 до 100, необходимо сначала просуммировать первый элемент и последний (полученное значение будет равно сумме предпоследнего и второго, предпредпоследнего и третьего элементов, и так далее), а затем это число следует умножить на количество этих сумм, то есть на 50.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Формулу, которая отражает изложенный результат на частном примере, можно обобщить на произвольный случай. Она будет иметь вид: Sn = n/2*(an+a1). Заметим, что для нахождения указанной величины, знание разности d не требуется, если известны два члена прогрессии (an и a1).

Пример №1. Определите разность, зная два члена ряда a1 и an

Поскольку нам известны значения двух элементов числовой последовательности, при этом один из них является первым числом, то можно воспользоваться формулой №2 для определения разности d. Имеем: d =(-1*(-12,1)+(-5,6) )/12 = 0,54167. В выражении мы использовали значение n=13, поскольку известен член именно с этим порядковым номером.

Полученная разность свидетельствует о том, что прогрессия является возрастающей, несмотря на то, что данные в условии задачи элементы имеют отрицательное значение. Видно, что a13>a1, хотя |a13| 0 или, используя соответствующую формулу, перепишем неравенство: a1 + (n-1)*d>0. Необходимо найти неизвестное n, выразим его: n>-1*a1/d + 1. Теперь осталось подставить известные значения разности и первого члена последовательности. Получаем: n>-1*(-12,1) /0,54167 + 1= 23,338 или n>23,338. Поскольку n может принимать только целочисленные значения, из полученного неравенства следует, что любые члены ряда, которые будут иметь номер больше чем 23, будут положительными.

Пример №3. Сколько бревен поместится?

Приведем одну любопытную задачу: во время заготовки леса было решено спиленные бревна укладывать друг на друга так, как это показано на рисунке ниже. Сколько бревен можно уложить таким образом, зная, что всего поместится 10 рядов?

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Общую сумму этой «пирамидальной» конструкции можно получить, если воспользоваться формулой Гаусса. Получаем: S10 = 10/2*(10+1) = 55 бревен.

Источник

Арифметическая прогрессия: определение, формулы, свойства

Арифметическая прогрессия – это числовая последовательность, в которой, начиная со второго числа, каждое последующее равняется предыдущему плюс постоянное слагаемое.

Общий вид арифметической прогрессии

d – шаг или разность прогрессии; это и есть постоянное слагаемое.

Члены прогрессии:

Цифры 1,2,3… – это их порядковые номера, т.е. место, которое они занимают в последовательности.

Свойства и формулы арифметической прогрессии

1. Нахождение общего n-ого члена ( an )

2. Разность прогрессии

Также для нахождения шага используется такая формула:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

3. Характеристическое свойство

Последовательность чисел a1, a2, a3 является арифметической прогрессией, если для любого ее члена выполняется следующее условие:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

4. Сумма первых членов прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, необходимо воспользоваться формулой:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

5. Сумма членов прогрессии с n-ого по m-ный

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

6. Сходимость прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Источник

Как найти арифметическую прогрессию? Арифметическая прогрессия примеры с решением

Что собой представляет арифметическая прогрессия?

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Вам будет интересно: Правописание: «непричем» или же «ни при чем»?

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Важные формулы

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Вам будет интересно: Почему Латинская Америка называется Латинской: исторические факты и современные споры

Далее, в статье приводятся различные примеры применения этих выражений.

Пример №1: нахождение неизвестного члена

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Приведем простой пример прогрессии арифметической и формул, которые необходимо использовать для решения.

Из условия задачи уже следует, что первые 4 слагаемых известны. Пятое можно определить двумя способами:

Как видно, оба способа решения привели к одному и тому же результату. Отметим, что в этом примере разность d прогрессии является отрицательной величиной. Такие последовательности называются убывающими, так как каждый следующий член меньше предыдущего.

Пример №2: разность прогрессии

Теперь усложним немного задачу, приведем пример, как найти разность прогрессии арифметической.

Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a2 = a1 + d, a3 = a2 + d и так далее. В итоге восстанавливаем всю последовательность: a1 = 6, a2 = 6 + 2=8, a3 = 8 + 2 = 10, a4 = 10 + 2 = 12, a5 = 12 + 2 = 14, a6 = 14 + 2 = 16, a7 = 18.

Пример №3: составление прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии Вам будет интересно: Признаки подобия и равенства треугольников. Свойства подобных треугольников

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Пример №4: первый член прогрессии

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a15 = 50 и a43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

Формулы, которыми пользовались до настоящего времени, предполагают знание a1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a15 = a1 + 14 * d и a43 = a1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a43 = a1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: Sn = n * (a1 + an) / 2 = 100 * (1 + 100) / 2 = 5050.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Пример №6: сумма членов от n до m

Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

Полученная формула является несколько громоздкой, тем не менее сумма Smn зависит только от n, m, a1 и d. В нашем случае a1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: Smn = 301.

Некоторые советы при решении задач с арифметической прогрессией

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

Источник

Арифметическая прогрессия (ЕГЭ 2022)

Знаменитый ученый Карл Гаусс однажды сказал:

«Ничего не сделано, если что-то осталось недоделанным.»

Поэтому давай сейчас разберем одну из важнейших тем алгебры – арифметическую прогрессию.

А если остались какие-то пробелы, заполним их.

Кстати, Гаусса мы вспомнили не просто так 🙂

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна \( \displaystyle d\).

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Арифметическая прогрессия бывает возрастающей (\( \displaystyle d>0\)) и убывающей (\( \displaystyle d Формула нахождения n-ого члена арифметической прогрессии:

Как найти член прогрессии, если известны его соседние члены:

Сумма членов арифметической прогрессии:

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: \( \displaystyle 4,\text< >7,\text< >-8,\text< >13,\text< >-5,\text< >-6,\text< >0,\text< >\ldots \)

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их \( \displaystyle 7\)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и \( \displaystyle n\)-ное число) всегда одно.

Число с номером \( \displaystyle n\) называется \( \displaystyle n\)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, \( \displaystyle a\)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: \( \displaystyle <_<1>>,\text< ><_<2>>,\text< >…,\text< ><_<10>>,\text< >…,\text< ><_>\).

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (\( \displaystyle 3;\text< >7;\text< >11;\text< >15;\text< >19\ldots \)) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение \( \displaystyle 140\)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка.

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение \( \displaystyle 4\)-го члена данной арифметической прогрессии:

Попробуй самостоятельно найти таким способом значение члена \( \displaystyle n=6\) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли \( \displaystyle d\) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

Кстати, таким образом мы можем посчитать и \( \displaystyle 140\)-ой член данной арифметической прогрессии (да и \( \displaystyle 169\)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения \( \displaystyle 140\)-го и \( \displaystyle 169\)-го членов, применив полученную формулу.

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего.

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего.

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: \( \displaystyle 13;\text< >8;\text< >4;\text< >0;\text< >-4.\)

Проверим, какое получится \( \displaystyle 4\)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

Заметим, что так как арифметическая прогрессия убывающая, то значение \( \displaystyle d\) будет отрицательным, ведь каждый последующий член меньше предыдущего.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти \( \displaystyle 140\)-ой и \( \displaystyle 169\)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

\( \displaystyle 4;\text< >x;\text< >12\ldots \) — арифметическая прогрессия, найти значение \( \displaystyle x\).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

Получается, мы сначала находим \( \displaystyle d\), потом прибавляем его к первому числу и получаем искомое \( \displaystyle x\).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа \( \displaystyle 4024;

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Просуммируем предыдущий и последующий члены прогрессии:

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на \( 2\).

Попробуем посчитать значение \( x\), используя выведенную формулу:

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение \( x\) для прогрессии \( \displaystyle 4024;

x;6072\) самостоятельно, ведь это совсем несложно.

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от \( \displaystyle 1\) до \( \displaystyle 40\) (по другим источникам до \( \displaystyle 100\)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из \( \displaystyle 6\)-ти членов: \( \displaystyle 6;\text< >8;\text< >10;\text< >12;\text< >14;\text< >16…\)

Нам необходимо найти сумму данных \( \displaystyle 6\) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму \( \displaystyle 100\) ее членов, как это искал Гаусс?

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть \( \frac<6><2>=3\).

Исходя из того, что сумма двух членов арифметической прогрессии равна \( 22\), а подобных равных пар \( 3\), мы получаем, что общая сумма равна:

\( \displaystyle S\text< >=\text< >22\cdot 3\text< >=\text< >66\).

Таким образом, формула для суммы первых \( \displaystyle n\) членов любой арифметической прогрессии будет такой:

В некоторых задачах нам неизвестен \( \displaystyle n\)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу \( \displaystyle n\)-го члена. \( <_>=<_<1>>+d\left( n-1 \right)\)

Что у тебя получилось?

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма \( \displaystyle 40\) чисел, начиная от \( \displaystyle 1\)-го, и сумма \( \displaystyle 100\) чисел начиная от \( \displaystyle 1\)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма \( \displaystyle 100 \) членов равна \( \displaystyle 5050\), а сумма \( \displaystyle 40 \) членов \( \displaystyle 820\).

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется \( \displaystyle 6\) блочных кирпичей.

Что такое разность прогрессии. Смотреть фото Что такое разность прогрессии. Смотреть картинку Что такое разность прогрессии. Картинка про Что такое разность прогрессии. Фото Что такое разность прогрессии

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

\( \displaystyle 6;\text< >5;\text< >4;\text< >3;\text< >2;\ 1\).

Разность арифметической прогрессии \( \displaystyle

Количество членов арифметической прогрессии \( \displaystyle=6\).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии \( \displaystyle

Количество членов арифметической прогрессии \( \displaystyle=6\).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

Способ 2.

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Молодец, ты освоил сумму \( \displaystyle n\)-ных членов арифметической прогрессии.

Конечно, из \( \displaystyle 6\) блоков в основании пирамиду не построишь, а вот из \( \displaystyle 60\)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Верный ответ – \( \displaystyle 1830\) блоков:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *