Что такое рекуперация тепла
Вентиляция с рекуперацией тепла, или Как не отапливать улицу?
Домашний микроклимат обычно поддерживают при помощи кондиционеров и калориферов, но это не самый экономичный вариант. У него есть альтернатива, еще недостаточно распространенная в нашей стране, хотя и пользующаяся спросом по всему миру
Речь идет о приточно-вытяжной вентиляции с рекуперацией тепла. «Рекуперация» — слово латинского происхождения, означающее «возвращение затраченного». Рекуператор тепла в приточно-вытяжной установке частично возвращает тепловую энергию вытяжного потока, передавая ее приточному воздуху. Тепло возвращается в дом, а не выбрасывается на улицу. Для чего это нужно?
Во-первых, устройство позволяет с комфортом вентилировать помещение, уменьшая разницу температур между вытяжным и приточными потоками. Это особенно важно зимой, когда холодный воздух, поступающий в дом прямо с улицы, может стать причиной простудных заболеваний. При использовании рекуператора в помещение поступает свежий воздух, имеющий среднюю температуру между комнатной и наружной, в результате происходит более безопасное для здоровья проветривание.
Во-вторых, в отличие от других подобных устройств рекуператор осуществляет комфортное проветривание весьма экономным способом. На подогрев или охлаждение воздуха кондиционером и конвектором расходуется электроэнергия. Однако после того, как воздух в помещении прогревается или охлаждается до нужной температуры, его просто выводят во внешнюю среду по вытяжному каналу. Тепловая энергия воздуха вместе с денежными средствами, затраченными на ее производство, буквально выбрасывается на ветер. В рекуператоре, который сам по себе потребляет минимальное количество энергии, прогрев или охлаждение приточного воздуха происходит путем естественного теплообмена, а не с помощью электроэнергии.
Рекуператор возвращает тепло вытяжного потока в поступающий свежий воздух. В основу работы положен принцип: не нужно отапливать улицу!
Рекуператоры могут быть автономным устройством или представлять собой специальный модуль обычной приточно-вытяжной установки. Распространены в основном два типа конструкции рекуператоров: пластинчатые и роторные.
В пластинчатых воздушные потоки между собой не контактируют и не смешиваются, тепло передается через теплообменную кассету, состоящую из набора тонких пластин большой площади, разделяющих теплый и холодный воздух. Традиционно пластины делают из алюминиевой фольги или из пластика. Алюминиевые дешевле, но применение пластика немного повышает КПД устройства.
У этой изящной конструкции есть важный недостаток: из-за разницы температур приточного и вытяжного воздуха на теплообменных пластинах образуется конденсат, который в зимнее время замерзает и превращается в наледь. Для борьбы с наледью применяют разные средства. В стандартном варианте используют автоматику: срабатывает датчик обледенения, после чего приточный воздух идет в обход теплообменника. Нагревается этот обводной поток уже без рекуперации тепла с помощью встроенного калорифера. Одновременно вытяжной теплый воздух проходит через теплообменник и размораживает кассету. Эта фаза длится от 5 до 25 мин. в час. Экономии энергии все это время не происходит, устройство работает как обычный приточный вентилятор с затратой энергии на подогрев воздуха. Средняя мощность калорифера, применяемого в системе вентиляции, составляет от 1 до 5 кВт. Кроме того, вся конструкция усложняется за счет дренажной ванны и дренажного трубопровода, предназначенных исключительно для отвода и сбора конденсата. Иногда используют предварительный подогрев приточного воздуха во избежание наледи, но в этом случае расходуется дополнительная энергия, и КПД рекуператора все равно снижается. Если номинальная эффективность алюминиевого теплообменника составляет около 65%, то рекуператор с таким теплообменником способен сэкономить в итоге только 45% энергии.
Другой вариант решения проблемы конденсата — использование кассет из гигроскопической целлюлозы, стенки которых впитывают влагу из вытяжного потока и передают ее на сторону приточного, увлажняя его. В данном случае рекуперируется не только тепловая энергия, но и влага из воздуха. Поступающий в помещение свежий воздух максимально приближен к домашнему по температуре и влажности. Это наиболее комфортный вариант поддержания микроклимата. Отсутствие фазы, когда подогрев приточного воздуха осуществляется при помощи калорифера, позволяет значительно повысить эффективность утилизации тепла (до 60–70%).
У рекуператоров с двойным пластинчатым теплообменником из гигроскопической бумаги КПД достигает 90%. В этих устройствах тепло передается ступенчато через промежуточную зону, благодаря чему образование наледи исключено. Но кассеты из целлюлозы нельзя применять в помещениях с повышенной влажностью, например в ванных комнатах или бассейнах.
Рекуператоры – перспективное оборудование, пока еще недооцененное нашими потребителями в связи с его ценой. В европейских странах такие устройства активно используются, поскольку позволяют сэкономить значительную часть энергии, затрачиваемой на воздухоподготовку. Пластинчатый рекуператор экономит 50–80% энергии, роторный – 70–90% в зависимости от разности температур вытяжного и приточного воздуха. Один из факторов, который влияет на эффективность утилизации тепла, – это тип помещения. Установка вентиляции с рекуператором тепла, где в качестве «нагревателя» служит вытяжной воздух температурой 25–30°С, принесет существенную экономию.
В пластинчатых рекуператорах воздушные потоки изолированы, а в роторных — частично смешиваются
Главный элемент роторного рекуператора, как легко догадаться, вмонтированный в корпус устройства ротор. Он представляет собой вращающийся цилиндр, заполненный по всему объему слоями профилированного металла, алюминия или стали. Во время работы барабан ротора перемещается по кругу между приточным и вытяжным трактами. Пластины последовательно нагреваются вытяжным и охлаждаются приточным воздухом.
Эффективность происходящего теплообмена зависит от скорости вращения ротора, а ее можно регулировать. Это имеет большое значение для определения реального КПД рекуператора, который совпадает с номинальным КПД теплообменника только в том случае, когда скорость вращения ротора автоматически регулируется в согласии с показаниями датчиков наружной и комнатной температур. В роторном устройстве невозможно исключить частичного смешивания вытяжного и приточного потоков. Фильтры очистки приходится устанавливать как на притоке, так и на вытяжке. Из-за наличия подвижных частей в конструкции необходимо чаще, чем в случае пластинчатых рекуператоров, производить техническое обслуживание. Несмотря на эти недостатки, роторные модели популярны благодаря своей надежности и высокой эффективности возврата тепловой энергии (до 85%).
Монтаж рекуператора производят до отделки интерьера, иначе косметического ремонта не избежать
У потребителей и проектировщиков встречаются два основных предубеждения против приточных установок с рекуперацией тепла. Одно связано с ценой, второе – с пригодностью для наших погодных условий. Сравнивая цены, всегда необходимо учитывать, что окончательная стоимость складывается из цены оборудования и эксплуатационных расходов. Доля затрат на электроэнергию сегодня весьма весомая, а со временем она будет только возрастать. Установки с рекуперацией тепла и без таковой по цене сравнимы, зато в долговременной перспективе рекуператоры приносят ощутимую выгоду.
При оценке полезности использования в доме рекуператора нужно учитывать, что система вентиляции — это лишь одна из статей расхода энергии. Поэтому недостаточно эффективная рекуперация тепла не сильно снижает общие затраты. Может оказаться, что устройство с модулем рекуперации обойдется в два раза дороже обычного, а итоговая экономия составит не более 15%. Однако долговременный эффект покупка рекуператора все равно принесет. Это надежное оборудование, которое проработает много лет, позволяя постоянно экономить на эксплуатационных расходах. При расчетах систем вентиляции исходят из того, что в квартирах их производительность составляет 100–800 м³/ч, в загородных домах — 1000–2000 м³/ч.
‘>
Схема приточно-вытяжной установки Alasca с двумя теплообменными кассетами, что повышает КПД рекуператора до 90%
При выборе рекуператора необходимо знать требуемую производительность установки. Ее рассчитывают исходя из назначения и планировки помещения. Важную роль здесь играет кратность воздухообмена, которая показывает, сколько раз происходит полная замена воздуха в помещении в течение часа. Для загородного дома кратность обычно составляет от 0,5 до 1. Нормой замены воздуха из расчета на одного человека считается 36 м³/ч. Как правило, специалистам достаточно ознакомиться с планом дома, чтобы сказать, какая модель вам подходит. Установка компактных рекуператоров для одного помещения обойдется в 3000 руб. Для монтажа такой системы потребуется просверлить отверстия диаметром от 75 мм во внешней стене для прокладки воздуховодов. Важнейший в наших климатических условиях параметр, которым нужно интересоваться при выборе оборудования, — нижний предел рабочей температуры. Если устройство не рассчитано на эксплуатацию при температуре ниже –10°С, оно, вероятно, в зимние месяцы останется без дела.
Монтаж установок с рекуперацией тепла
Принципиальных отличий в монтаже обычных «приточек» и приточно-вытяжных установок с рекуперацией тепла нет, однако имеется своя специфика. В простой приточной системе воздух, например, подается снаружи в спальню, а выводится через естественную вытяжку санузла. В системе с рекуперацией будет два канала (приток и вытяжка), и соответственно нужно пробить два отверстия в стенах. Монтаж выйдет дороже, поскольку выполняется больше работ и используется больше воздуховодов, но технически он ничуть не сложнее. Правда, в некоторых моделях необходим дренаж, значит, потребуется предусмотреть еще одну трубу для отвода воды.
Воздуховоды должны быть теплоизолированы, иначе на стенках из-за разницы температур может образовываться конденсат. Рекуператоры не рекомендуется монтировать в спальне, потому что спать при работающем устройстве некомфортно. При установке системы в коттедже существенно помогает наличие фальшпотолков и фальшполов. Есть конструктивные особенности: некоторые модели предусматривают монтаж только в определенном положении (например, не плашмя, а вертикально), другие – универсальны. При выборе места для устройства, требующего дренажа, надо учитывать, что оно должно стоять в теплом помещении, поэтому балкон или лоджия не подходят. Дренаж осуществляется также, как и в обычных сплит-системах: вода отводится по трубе, спрятанной за фальшпотолком и направленной под уклоном к ближайшему стояку.
Рекуперация тепла что это такое и для чего требуется?
Главная страница » Рекуперация тепла что это такое и для чего требуется?
Рекуперация тепла – процесс, который осуществляется устройством, охватывающим два источника воздуха передаваемого при разных температурах. Фактически устройство передаёт энергию от одной стороны к другой. Также этот процесс можно охарактеризовать как основанный на предварительном нагреве поступающего внутрь воздуха за счёт рециркуляции отработанного тепла.
Системы рекуперации – характеристика в целом
В общем и целом рекуперация тепла разделяется на два вида — рекуперация явного тепла и рекуперация энтальпийного тепла. Энтальпийные теплообменники, благодаря способности регенерировать как явное, так и скрытое тепло, обладают лучшим экологическим эффектом. Обеспечивают большую долю влажной нагрузки в системе вентиляции и соответствуют требованиям к влажности воздуха в помещении для проектов современных зданий.
Типичная система теплообменника жилого здания обычно содержит:
Рекуперация тепла в доме (схема классическая): 1 – рекуператор; 2 – вход внешнего воздуха; 3 – выход внешнего воздуха; 4 – тёплый воздух ванной комнаты; 5 – тёплый воздух кухни; 6 – подогретый воздух в спальню; 7 – подогретый воздух в зал
Современные системы рекуперации тепла позволяют утилизировать около 60–95% энергии отходов, что видится эффективно многообещающим. Рассмотрим четыре категории систем рекуперации тепла, предназначенных для жилых зданий, а именно:
Перечисленное списком оборудование имеет свои особенности технически и технологически, что естественным образом сказывается на эффективности действия и на достижении желаемого результата.
Рекуперация тепла – конструктивное исполнение модулей
Среди разработанных устройств подобного рода достаточно широко используются на практике две конструкции, стоящие в списке первыми. Это схема на основе вращающегося диска и схема на основе стационарного пластинчатого модуля. Ещё два устройства – тепловая труба и система водоотвода, применяются тоже, но уже несколько реже первых двух конструкций.
Конструкция дисковый рекуператор
Рекуперации тепла посредством вращающегося диска, по сути, представляет вращающееся металлическое пористое колесо. Вращение такого колеса выполняется приводом от электродвигателя. В процессе обмена тепла и влаги два потока поочерёдно проходят сквозь пористую структуру колеса. Скорость вращения ротора, как правило, небольшая, 3 — 15 оборотов за минуту.
Достигаемая эффективность рекуперации тепла вращающегося металлического диска на стороне воздуха, как правило, намного выше, чем показывает любая другая конструкция рекуперации.
Обусловлено это природой теплообменных дисков, которые позволяют теплу отводиться от системы рекуперации тепла на стороне воздуха с учётом природы тепла. Дисковый рекуператор передаёт тепло от потока выхлопных газов к потоку питания, не проходя непосредственно через среду обмена.
Обычно рекуперация тепла вращающимся диском обеспечивает эффективность теплообмена на 80% и выше. Конструкция вращающегося диска оказалась одним из наиболее эффективных вариантов обработки влаги, переносимой проходящим воздухом.
Дисковый рекуператор (схема): 1 – возвратный воздушный поток; 2 – отработанный воздушный поток; 3 – приточный воздух; 4 – наружный воздух
Однако рекуперация тепла вращающимся диском восстанавливает не более 40% доступной энтальпии.
Эти и прочие факторы могут быть основными влияющими факторами на процесс в целом. Многие исследовательские группы усердно работают над достижением высокой эффективности рекуперации тепла посредством вращающегося диска. Оптимальные значения длины и пористости структуры колеса, при этом, могут быть получены с помощью численной модели «Dallaire».
Исследования показывают преимущества роторного теплообменника. В частности, высокую эффективность теплообменника и относительно короткие сроки окупаемости. Однако развитие рекуперации тепла вращающимся диском ограничено проблемами короткого замыкания и перекрестного загрязнения воздуха. В результате короткого замыкания потоки циркулируют в непредусмотренном направлении, что значительно снижает эффективность системы.
Рекуператор стационарный пластинчатый модуль
Стационарные пластинчатые теплообменники построены на основе тонких металлических пластин, уложенных рядами. Так создаются каналы воздушного потока. Первый пластинчатый теплообменник, как утверждается, изобретён в 1923 году. Конструкция применялась для косвенного нагрева/охлаждения жидкости. Существует три типа направления воздушного потока:
Если пластины устройства изготовлены из материала высокой теплопроводности и влагопроницаемости, образуется энтальпийный теплообменник. Физическая эффективность энергии близка к 66%, тогда как для скрытой энергии этот показатель составляет около 59%.
Пластинчатый стационарный рекуператор (схема): 1 – рабочие пластины рекуперации тепла; 2 – вход наружного потока; 3 – обработанный поток в комнату; 4 – поток из комнаты; 5 – исходящий отработанный поток
Между тем, создана система рекуперации с фиксированной пластиной на основе пористого мембранного материала. Тепловая эффективность новой системы составляет около 75% от явной энергетической эффективности и 65% от скрытого эквивалента.
Если пластины конструкции (металлические, пластиковые и прочие) не способны впитывать влагу, теплопроводность и геометрия материала имеют первостепенное значение для рекуперации явного тепла. Обычно при использовании явной рекуперации тепла коэффициент теплообмена может составлять 50% — 80%. Факторы, которые могут повлиять на эффективность теплопередачи пластинчатой конструкцией, включают:
Современные коммерческие продукты отличаются высокой скоростью теплообменника. Например, совершенная система рекуперации тепла инженеров Дании с фиксированной пластиной обеспечивает коэффициент теплообмена на уровне 93%. Теплообменники с фиксированной пластиной имеют многообещающее будущее с точки зрения более высоких тепловых характеристик в жилых домах.
Рекуператор по схеме тепловая труба
Системы рекуперации, где используются тепловые трубы для передачи энергии, сочетают принципы теплопроводности и фазового перехода. Так достигается эффективная передача энергии между двумя твёрдыми поверхностями. Типичная тепловая труба состоит из двух закрытых областей, заполненных рабочей жидкостью.
Тепловая труба передаёт тепловую энергию с одной стороны на другую с небольшой разницей температур. В момент работы сконденсированная жидкость перемещается в секцию испарения благодаря структуре фитиля, оказывающей капиллярное действие.
Типичное исполнение рекуператоров по схеме тепловая труба позволяет достигать теплового КПД около 50%. Эффективность системы рекуперации тепловых труб в доме с естественной вентиляцией может достигать 50% при потере давления менее 1 Па.
Установка по схеме тепловая труба: 1 – трубчатый рекуператор; 2 – уличный воздух; 3 – подогретый воздушный поток; 4 – забираемый из помещения воздушный поток; 5 – выброс отработанного воздуха; 6 – рабочая зона в летнем режиме
Эффективность, однако, снижается с увеличением расхода воздуха, что приводит к нестандартному тепловому контакту между пластинами и трубками. Что касается факторов, которые могут повлиять на эффективность теплообменных трубок, здесь следует отметить некоторые ключевые точки:
Последние годы достаточно большое внимание уделяется применению рекуперации по технологии тепловая труба. Разработана даже технология проверки характеристик и сбора данных относительно эффективности систем тепловых труб для рекуперации в системах кондиционирования воздуха. Скорость теплопередачи для секций испарителя и конденсатора, согласно тестам, имеет тенденцию на увеличение, примерно, до 48%.
Рекуперативная циркуляционная система
Системы циркуляционной рекуперации состоят из двух отдельных теплообменников и промежуточной рабочей жидкости. Посредством насоса перекачивающего промежуточную жидкость, поглощаемое тепло передаётся от одного потока к другому.
Рекуперация таким методом позволяет избежать перекрестного загрязнения через разделение двух теплообменников. Коэффициент теплообмена при рекуперации вторичного тепла колеблется в диапазоне 45% — 65% при нормальных условиях.
Рекуперативная циркуляционная система (схема): 1 – вход нагретого воздушного потока; 2 – выход нагретого воздушного потока; 3 – циркуляционный насос; 4 – вход охлаждённого воздушного потока; 5 – выход охлаждённого воздушного потока
Использование рекуперативной циркуляционной системы в составе жилого здании может увеличить скорость вентиляционного потока без увеличения потребления энергии. Что касается рабочих характеристик рекуперации вторичного тепла, экспериментальные результаты показали интересные моменты.
Для данной общей площади поверхности теплообменников наивысшая общая ощутимая эффективность достигается с конструкциями, которые имеют небольшой коэффициент формы теплового обмена.
Кроме того, эффективность такого типа рекуперации тепла в значительной степени зависит от внешних условий. Поэтому рекуперативная циркуляционная система часто размещается в потоках приточного и вытяжного воздуха промышленных процессов.
Видео по теме рециркуляционных системных установок
Видеороликом ниже представлен краткий обзор промышленной вентиляционной приточно-вытяжной установки, в состав которой включен рекуператор дисковый высокой эффективности действия:
При помощи информации: Nottingham
КРАТКИЙ БРИФИНГ
Рекуперация тепла. Преимущества термодинамической рекуперации
Совершенствование строительных норм, появление новых строительных материалов, технологий строительства и увеличение потребности в комфорте ужесточает требования к инженерным системам вновь возводимых зданий, в том числе к вентиляционным системам, и делают естественной минимизацию энергопотребления для этих систем.
Рекуперацией тепла (лат. recuperator — снова приобретающий, отвоёвывающий, снова овладевающий) называется возврат (полностью или частично) теплового потенциала, используемого в том или ином технологическом цикле, для вторичного применения.
Рекуперация тепла (применительно к вентиляции) — это процесс теплопередачи, при котором тепловая энергия вытяжного воздуха посредством контакта с теплообменным устройством переходит к свежему приточному воздуху, за счёт чего происходит его нагрев. Теплообменное устройство называется рекуператором, причём в последнее время этим термином называют как теплообменник (об их типах ниже), так и более сложное устройство для рекуперации воздушного тепла. Итогом такого процесса является выброс зимой на улицу уже охлаждённого воздуха и подача в помещения уже подогретого.
Совершенствование строительных норм, появление новых строительных материалов, технологий строительства и увеличение потребности в комфорте ужесточает требования к инженерным системам вновь возводимых зданий, в том числе к вентиляционным системам, делают естественной минимизацию энергопотребления для этих систем. Пережитком ушедшего века можно считать механическую вытяжку и естественный приток. Такой метод был низкозатратен и на этапе проектирования и строительства позволял экономить на капитальных затратах. По старым строительным нормам воздухообмен в помещениях осуществлялся следующим образом. Вытяжная вентиляция, естественная, за счёт разницы давления, или принудительная, создавала внутри помещений разрежение воздуха, и для его компенсации через щели и неплотности в окнах и дверях воздух снаружи попадал в комнаты. С началом отопительного сезона поступающий воздух нагревался системой отопления, спроектированной с колоссальным запасом, с учётом такого нагрева. Эксплуатационные затраты на содержание зданий при такой системе отопления и вентиляции были, конечно, огромными.
При этом воздухообмен в помещениях нормируется весьма условно (советская система здравоохранения совершенно справедливо рекомендовала, по возможности, держать открытыми форточки в жилых помещениях).
Развитие строительных технологий привело к появлению оконных и дверных пакетов, закрывающихся герметично. Такие окна и двери стали значительно экономить тепловую энергию, но сделали практически невозможным воздухообмен в помещениях. Вдобавок, в результате применения современных строительных материалов, значительно снижается воздухопроницаемость стен. Находиться в таких помещениях — и регулярно проживать в них без системы воздухообмена — стало крайне небезопасно для здоровья. Появилась необходимость оборудовать помещения принудительной приточно-вытяжной вентиляцией. Что, в свою очередь, вновь увеличило нагрузку на систему отопления за счёт регулярного нагрева приточного воздуха. А появившиеся и повсеместно распространившиеся системы кондиционирования получают дополнительную нагрузку в жаркий период, так как происходит обратный процесс — на улицу регулярно выбрасывается уже не нагретый, а охлаждённый воздух помещений. То есть мы вновь вернулись к отоплению улицы, к которому теперь добавилось и кондиционирование её в летний период. Стремительно дорожающие для потребителя коммунальные услуги и ухудшающееся здоровье населения поставили перед выбором — на чём экономить? Зачем нагревать в помещениях воздух, если он тут же выбрасывается на улицу? С другой стороны, растущее количество аллергиков и астматиков говорит о том, что герметичные помещения небезопасны. Ответ очевиден — необходимо использовать такую вентиляционную систему, в которой тепло, требуемое для подогрева холодного внешнего воздуха, будет отниматься у использованного вытягиваемого воздуха. И, соответственно, наоборот — в жаркую погоду при кондиционировании. То есть вентиляционную систему, в которой применяется рекуперация тепла.
Рекуператор воздуха — приспособление, которое осуществляет энергосберегающую функцию, так как позволяет нагревать холодный нагнетаемый воздух, используя тепло отработанного вытяжного. Что, в свою очередь, даёт возможность экономить в отопительно-вентиляционной инженерной системе, так как снижает нагрузку на отопление в части нагрева приточного воздуха. Нагрев же приточного воздуха может составлять до половины всей отопительной мощности при однократном обмене воздуха в помещениях и, конечно, занимать львиную долю отопительной мощности при многократном (трёх-, пятии десятикратном) обмене воздуха.
Таким образом, промышленный рекуператор воздуха (на производствах с многократным обменом воздуха) ещё более жизненно необходим, чем рекуператор для частного дома. Рекуператор воздуха делится на нескольких типов.
Пластинчатый рекуператор
Вытягиваемый и свежий поступающий воздух двигаются поперёк или противотоком во множестве плоских каналов, образованных пластинками из теплопроводного материала, через который, не смешиваясь, обмениваются теплом. Пластинчатые рекуператоры имеют особенность, связанную с тем, что пластины одновременно контактируют с тёплым и холодным воздухом, — в результате такого контакта при значительной разнице температур на пластинах будет оседать влага, которая при понижении температуры может превратиться в лёд. Поэтому пластинчатый рекуператор должен оснащаться системой отвода конденсата и системой оттаивания.
Пластинчатые рекуператоры имеют достаточно высокий показатель эффективности — от 50 до 75 %. Они получили достаточно широкое распространение из-за своей относительной дешевизны.
Роторный рекуператор
Ротор рекуператора изготавливается из теплопроводного материала. Вращаясь между потоками вытяжного и приточного воздуха, он осуществляет передачу тепла. Роторный рекуператор не является изолированной системой, поэтому нужно учитывать, что при наличии запахов или вредных примесей они могут попадать в приточный воздух. Хотя некоторые производители заявляют о том, что производимые ими роторные рекуператоры не допускают смешивания, на практике порядка 15 % вытяжного воздуха попадает в приточный канал. Для бытовых помещений это вполне допустимо, но не подходит, например, для вредных химических производств. Степень рекуперации тепла можно регулировать изменением скорости вращения ротора. Роторные рекуператоры демонстрируют высокий показатель эффективности (70– 85 %), а также отличаются достаточно высокой ценой. Существуют как в промышленном, так и бытовом исполнении.
Рекуператор с промежуточным теплоносителем
Такой рекуператор состоит из двух теплообменников, один из которых располагается в приточном канале вентиляции, а другой — в вытяжном. Между теплообменниками в замкнутой системе циркулирует антифриз, который в теплообменнике вытяжного канала аккумулирует тепло, а в теплообменнике приточного его отдаёт. Риск передачи запахов и загрязнений в такой системе отсутствует. Теплообмен можно регулировать, изменяя скорость протока антифриза и величину воздушного потока.
Камерный рекуператор
Основу данного рекуператора составляет камера, разделённая заслонкой. Заслонка регулирует движение воздушных потоков с таким расчётом, что тёплый вытяжной воздух нагревает стенки камеры, через которые затем пропускается приточный. Такая система не является изолированной и допускает смешение потоков воздуха, но имеет высокий показатель эффективности — порядка 70–80 %.
Рекуператор – тепловые трубы
Такой рекуператор представляет собой замкнутую систему трубопроводов, закачанных хладагентом, который в результате нагревания вытяжным воздухом испаряется, а при контакте с холодным приточным воздухом вновь конденсируется и принимает жидкое агрегатное состояние. Показатель эффективности находится в пределах 50–70 %.
Рекуператор воздуха, применяемый в системе вентиляции, позволяет добиться значительного снижения нагрузки на отопительную систему. Однако даже применение рекуператора требует обычно использования дополнительных секций в системе вентиляции. Для подогрева приточного воздуха применяются электрические нагревательные элементы или жидкостные калориферы, а для охлаждения приточного воздуха до заданной температуры — центральные кондиционеры или чиллеры.
Применение классических типов рекуператоров в системах вентиляции даёт возможность вторично использовать от 45 % тепла вытяжного воздуха.
Однако развитие систем рекуперации не стоит на месте, и способы и эффективность утилизации тепла вытяжного воздуха для сохранения его внутри обслуживаемых помещений постоянно совершенствуются. Результатом такого развития является, например, система с термодинамической рекуперацией тепла (тепловой насос вида «воздух-воздух» используется совместно с пластинчатым или роторным рекуператором), которая использует контур теплового преобразователя с прямым расширением, размещаемый в виде фреоновых теплообменников в вытяжном и приточном канале приточно-вытяжной установки после классического пластинчатого (или роторного) рекуператора. Такая система, после теплообмена непосредственно в рекуператоре, позволяет получить с вытяжного воздуха ещё какое-то количество тепла для передачи приточному, доводя общий показатель эффективности до 95–100 %. Таким образом, удаётся добиться максимально комфортной, то есть заданной температуры приточного воздуха почти без расхода энергоресурсов.
Ещё одно неоспоримое преимущество термодинамической или активной рекуперации состоит в том, что исключается потребность в дополнительных секциях нагрева и охлаждения.
В настоящее время уже разработаны и производятся установки, сочетающие в себе устройства приточной и вытяжной вентиляции, рекуператор воздуха и тепловой насос вида «воздух–воздух» для активной рекуперации. Данные приточно-вытяжные рекуперативные установки являются отличным универсальным решением для организации системы вентиляции в современных зданиях и сооружениях.
Весь модельный ряд приточно-вытяжных установок (ПВУ) с рекуперацией тепла по своим характеристикам оптимально подходит для реализации проектов приточно-вытяжных вентиляционных систем любых зданий и помещений бытового, служебного или промышленного назначения за счёт использования технологии «активной» рекуперации тепла (встроенная секция охлаждения или нагрева тепловым насосом вида «воздухвоздух»). Значительный эффект энергосбережения демонстрируют промышленные версии рассматриваемых установок.
При этом чем больше производственные мощности или выше требования к воздухообмену, тем значительнее экономия. Достаточно сказать, что по нормам воздухообмена в ряде промышленных производств (металлургия, химическое производство, кузнечные цеха) и в аспирационных системах требуется пятиили даже десятикратный обмен воздуха ежечасно. Проекты промышленной вентиляции с использованием данных ПВУ достаточно быстро окупаются.
В бытовых приточно-вытяжных установках используются ЕС-кулеры, которые, имея увеличенное давление воздуха и перекачиваемый объём, потребляют до четверти меньше электрической энергии по сравнению с идентичными асинхронными электродвигателями.
Промышленная линейка установок для регулирования производительности комплектуется частотными преобразователями.
Также опционально модели можно дооснастить инверторами и дополнительными теплообменниками, идеально приспособив установку к требованиям конкретного проекта.
Проектирование же системы вентиляции с рассматриваемой установкой позволяет предложить пользователю совершенную вентиляционную систему.