Что такое система команд исполнителя алгоритмов ски
Алгоритм и исполнитель
Пожалуйста, приостановите работу AdBlock на этом сайте.
В этом уроке разберём некоторые теоретические понятия, которые формализуют понятие программирования. Заодно точнее сформулируем основную задачу вашего обучения.
Для начала предлагаю вам немного поиграться со следующей детской игрушкой. Пройдите первые пять заданий, возвращайтесь назад и продолжайте чтение урока.
Рис.1 Скриншот игрового поля на code.org
Надеюсь, у вас всё получилось. Теперь на этом примере опишем несколько основных понятий:
В игрушке мы управляем красной птичкой. Задача каждого этапа: добраться птичкой до свиньи. Птичка умеет выполнять определённые команды, например: переместить вперёд, повернуть налево, повернуть направо и др.
Необходимо заострить внимание на нескольких моментах.
Исполнитель может выполнять только те команды, которые входят в его систему команд.
Это означает, например, что нельзя написать исполнителю-птичке: «Иди к свинье!». Точнее записать можно, но только ничего не произойдёт, т.к. исполнитель таких команд не знает.
Имеющиеся команды вы можете записывать в любом порядке, который посчитаете правильным. Ваша задача как программиста – разделить большую сложную задачу на маленькие отдельные шаги, каждый из которых будет понятен исполнителю. Снова работает принцип «разделяй и властвуй».
Исполнитель выполняет точно то, что предписывает ему алгоритм.
Исполнитель-птичка очень доверчивая. Она не подвергает сомнению то, что вы пишете в программе. Если, например, вы забудете развернуть птичку, то она врежется в стенку. Поэтому вы должны следить за всем самостоятельно.
Ваши будущие программы часто будут работать не так, как вы задумывали. Ошибки случаются у всех. Тут важно понимать, что это не компьютер дурак, а вы допустили ошибку в алгоритме. Не уподобляйтесь плохим программистам, у которых во всём всегда виновата программа.
Теперь от наглядного примера перейдём к компьютерным реалиям. Мы пишем программы для компьютера, а значит, компьютер в нашем случае является исполнителем. Система команд – стандартные функции и конструкции языка Си.
В чём состоит основная задача вашего обучения основам программирования? Овладеть навыком алгоритмического мышления. То есть научиться записывать решение различных задач в виде алгоритма для конкретного исполнителя (в нашем случае компьютера).
Компьютерная программа – алгоритм решения какой-либо задачи, записанный на языке программирования.
Алгоритм – точное описание порядка действий, которые должен выполнить исполнитель для того, чтобы решить задачу.
Исполнитель – человек или некоторое устройство, которое может понимать и выполнять определённый набор команд.
Система команд исполнителя – набор команд, которые понимает и умеет выполнять исполнитель.
Основная задача данного курса – научиться записывать решение различных задач в виде алгоритмов для компьютера.
Практика
Решите предложенные задачи. Для удобства работы сразу переходите в полноэкранный режим
Подборка задач из Единого государственного экзамена на тему Анализ и построение алгоритмов для исполнителей (*.doc) на сайте К.Ю. Полякова. И ответы для самопроверки.
Зеркала на этом сайте: Задачи и ответы (нужный столбец отмечен зелёным цветом)
Дополнительные материалы
Как же в проге ошибку исправить?
Ведь бывает, не ровен же час.
Нажимаю я кнопку «Отправить»
И думаю:»Может сейчас?»
(c) Дроздова Дария Ивановна
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
§ 2.1. Алгоритмы и исполнители
Информатика. 8 класса. Босова Л.Л. Оглавление
Ключевые слова:
2.1.1. Понятие алгоритма
Каждый человек в повседневной жизни, в учёбе или на работе решает огромное количество задач самой разной сложности. Сложные задачи требуют длительных размышлений для нахождения решения; простые и привычные задачи человек решает не задумываясь, автоматически. В большинстве случаев решение каждой задачи можно разбить на простые этапы (шаги). Для многих таких задач (установка программного обеспечения, сборка шкафа, создание сайта, эксплуатация технического устройства, покупка авиабилета через Интернет и т. д.) уже разработаны и предлагаются пошаговые инструкции, при последовательном выполнении которых можно прийти к желаемому результату.
Пример 1. Задача «Найти среднее арифметическое двух чисел» решается в три шага:
Пример 2. Задача «Внести деньги на счёт телефона» подразделяется на следующие шаги:
Пример 3. Этапы решения задачи «Нарисовать весёлого ёжика» представлены графически:
Нахождение среднего арифметического, внесение денег на телефонный счёт и рисование ежа — на первый взгляд совершенно разные процессы. Но у них есть общая черта: каждый из этих процессов описывается последовательностями кратких указаний, точное следование которым позволяет получить требуемый результат. Последовательности указаний, приведённые в примерах 1-3, являются алгоритмами решения соответствующих задач. Исполнитель этих алгоритмов — человек.
Алгоритм может представлять собой описание некоторой последовательности вычислений (пример 1) или шагов нематематического характера (примеры 2-3). Но в любом случае перед его разработкой должны быть чётко определены начальные условия (исходные данные) и то, что предстоит получить (результат). Можно сказать, что алгоритм — это описание последовательности шагов в решении задачи, приводящих от исходных данных к требуемому результату.
В общем виде схему работы алгоритма можно представить следующим образом (рис. 2.1).
Алгоритмами являются изучаемые в школе правила сложения, вычитания, умножения и деления чисел, многие грамматические правила, правила геометрических построений и т. д.
Анимации «Работа с алгоритмом» (193576), «Наибольший общий делитель» (170363), «Наименьшее общее кратное» (170390) помогут вам вспомнить некоторые алгоритмы, изученные на уроках русского языка и математики (http://sc.edu.ru/).
Пример 4. Некоторый алгоритм приводит к тому, что из одной цепочки символов получается новая цепочка следующим образом:
Получившаяся таким образом цепочка является результатом работы алгоритма.
Так, если исходной была цепочка А#В, то результатом работы алгоритма будет цепочка #А1В2, а если исходной цепочкой была АБВ@, то результатом работы алгоритма будет цепочка БА@В2.
2.1.2. Исполнитель алгоритма
Каждый алгоритм предназначен для определённого исполнителя.
Исполнитель — это некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.
Различают формальных и неформальных исполнителей. Формальный исполнитель одну и ту же команду всегда выполняет одинаково. Неформальный исполнитель может выполнять команду по-разному.
Рассмотрим более подробно множество формальных исполнителей. Формальные исполнители необычайно разнообразны, но для каждого из них можно указать следующие характеристики: круг решаемых задач (назначение), среду, систему команд и режим работы.
Круг решаемых задач. Каждый исполнитель создаётся для решения некоторого круга задач — построения цепочек символов, выполнения вычислений, построения рисунков на плоскости и т. д.
Среда исполнителя. Область, обстановку, условия, в которых действует исполнитель, принято называть средой данного исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Система команд исполнителя. Предписание исполнителю о выполнении отдельного законченного действия называется командой. Совокупность всех команд, которые могут быть выполнены некоторым исполнителем, образует систему команд данного исполнителя (СКИ). Алгоритм составляется с учётом возможностей конкретного исполнителя, иначе говоря, в системе команд исполнителя, который будет его выполнять.
Режимы работы исполнителя. Для большинства исполнителей предусмотрены режимы непосредственного управления и программного управления. В первом случае исполнитель ожидает команд от человека и каждую поступившую команду немедленно выполняет. Во втором случае исполнителю сначала задаётся полная последовательность команд (программа), а затем он выполняет все эти команды в автоматическом режиме. Ряд исполнителей работает только в одном из названных режимов.
Рассмотрим примеры исполнителей.
Пример 5. Исполнитель Черепашка перемещается на экране компьютера, оставляя след в виде линии. Система команд Черепашки состоит из двух команд:
Запись Повтори k [ … ] означает, что последовательность команд в скобках повторится k раз.
Подумайте, какая фигура появится на экране после выполнения Черепашкой следующего алгоритма.
Повтори 12 [Направо 45 Вперёд 20 Направо 45]
Пример 6. Система команд исполнителя Вычислитель состоит из двух команд, которым присвоены номера:
1 — вычти 1
2 — умножь на 3
Первая из них уменьшает число на 1, вторая увеличивает число в 3 раза. При записи алгоритмов для краткости указываются лишь номера команд. Например, алгоритм 21212 означает следующую последовательность команд:
С помощью этого алгоритма число 1 будет преобразовано в 15: ((1 • 3 — 1) • 3-1) • 3 = 15.
Пример 7. Исполнитель Робот действует на клетчатом поле, между соседними клетками которого могут стоять стены. Робот передвигается по клеткам поля и может выполнять следующие команды, которым присвоены номера:
1 — вверх
2 — вниз
3 — вправо
4 — влево
При выполнении каждой такой команды Робот перемещается в соседнюю клетку в указанном направлении. Если же в этом направлении между клетками стоит стена, то Робот разрушается.
Что произойдёт с Роботом, если он выполнит последовательность команд 32323 (здесь цифры обозначают номера команд), начав движение из клетки А? Какую последовательность команд следует выполнить Роботу, чтобы переместиться из клетки А в клетку В, не разрушившись от встречи со стенами?
При разработке алгоритма:
Можно сказать, что алгоритм — модель деятельности исполнителя алгоритмов.
2.1.3. Свойства алгоритма
Не любая инструкция, последовательность предписаний или план действий может считаться алгоритмом. Каждый алгоритм обязательно обладает следующими свойствами: дискретность, понятность, определённость, результативность и массовость.
Свойство дискретности означает, что путь решения задачи разделён на отдельные шаги (действия). Каждому действию соответствует предписание (команда). Только выполнив одну команду, исполнитель может приступить к выполнению следующей команды.
Свойство понятности означает, что алгоритм состоит только из команд, входящих в систему команд исполнителя, т. е. из таких команд, которые исполнитель может воспринять и по которым может выполнить требуемые действия.
Свойство определённости означает, что в алгоритме нет команд, смысл которых может быть истолкован исполнителем неоднозначно; недопустимы ситуации, когда после выполнения очередной команды исполнителю неясно, какую команду выполнять следующей. Благодаря этому результат алгоритма однозначно определяется набором исходных данных: если алгоритм несколько раз применяется к одному и тому же набору исходных данных, то на выходе всегда получается один и тот же результат.
Свойство результативности означает, что алгоритм должен обеспечивать получение результата после конечного, возможно, очень большого, числа шагов. При этом результатом считается не только обусловленный постановкой задачи ответ, но и вывод о невозможности продолжения по какой-либо причине решения данной задачи.
Свойство массовости означает, что алгоритм должен обеспечивать возможность его применения для решения любой задачи из некоторого класса задач. Например, алгоритм нахождения корней квадратного уравнения должен быть применим к любому квадратному уравнению, алгоритм перехода улицы должен быть применим в любом месте улицы, алгоритм приготовления лекарства должен быть применим для приготовления любого его количества и т. д.
Пример 8. Рассмотрим один из методов нахождения всех простых чисел, не превышающих некоторое натуральное число п. Этот метод называется «решето Эратосфена» по имени предложившего его древнегреческого учёного Эратосфена (III в. до н. э.).
Для нахождения всех простых чисел, не больших заданного числа n, следуя методу Эратосфена, нужно выполнить следующие шаги:
Более наглядное представление о методе нахождения простых чисел вы сможете получить с помощью размещённой в Единой коллекции цифровых образовательных ресурсов анимации «Решето Эратосфена» (180279).
Рассмотренная последовательность действий является алгоритмом, так как она удовлетворяет свойствам:
Рассмотренные свойства алгоритма позволяют дать более точное определение алгоритма.
Алгоритм — это предназначенное для конкретного исполнителя описание последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами дискретности, понятности, определённости, результативности и массовости.
2.1.4. Возможность автоматизации деятельности человека
Разработка алгоритма — как правило, трудоёмкая задача, требующая от человека глубоких знаний, изобретательности и больших временных затрат.
Решение задачи по готовому алгоритму требует от исполнителя только строгого следования заданным предписаниям.
Пример 9. Из кучки, содержащей любое, большее трёх, количество каких-либо предметов, двое играющих по очереди берут по одному или по два предмета. Выигрывает тот, кто своим очередным ходом сможет забрать все оставшиеся предметы.
Рассмотрим алгоритм, следуя которому первый игрок наверняка обеспечит себе выигрыш.
Исполнитель может не вникать в смысл того, что он делает, и не рассуждать, почему он поступает так, а не иначе, т. е. он может действовать формально. Способность исполнителя действовать формально обеспечивает возможность автоматизации деятельности человека. Для этого:
Самое главное: Алгоритмы и исполнители
Исполнитель — некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.
Формальный исполнитель одну и ту же команду всегда выполняет одинаково. Для каждого формального исполнителя можно указать: круг решаемых задач, среду, систему команд и режим работы.
Алгоритм — предназначенное для конкретного исполнителя описание последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами дискретности, понятности, определённости, результативности и массовости.
Способность исполнителя действовать формально обеспечивает возможность автоматизации деятельности человека.
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Начнем урок с простой задачи. Что нужно сделать, если хочется выпить чая?
Один человек сразу включает чайник, потом начинает искать чашки, заварку, сахар.
Второй действует согласно плану:
Первый человек сразу бежит к цели, сломя голову, а второй – определяется с целью, разбивает сложный процесс на простые этапы и шаг за шагом идти к результату. Такой линейный алгоритм из жизни позволяет не запутаться, не пропустить что-то важное. Второй подход рациональнее, логичнее и удобнее, позволяет сложную задачу разбить на более простые.
Система команд или алгоритм, не просто удобнее, она позволяет выполнить задачу даже тому, кто не делает это часто, то есть новичку.
Алгоритмы, которыми мы пользуемся
Алгоритм – конечная последовательность действия, пошаговый план, инструкция, способ действия позволяющие достичь желаемого результата. Состоит из простейших команд.
Такие удобные инструкции мы используем постоянно, даже не осознавая это.
Давайте вспомним, какими детальными инструкциями мы пользуемся:
Имея цель, мы обрабатываем входные данные и получаем результат или объяснение, почему результат не может быть получен. Это напоминает функцию, но в случае с алгоритмами даны четкие рекомендации, что и как делать.
Пример в виде красочной инструкции и сухой пошаговой рекомендации:
Работа за компьюетром Инструкция по настройке
А в информатике без них не обойтись – именно на алгоритмах основано программирование.
При написании такой последовательности команд важно разбивать процесс на самые простые действия, которые понимаются однозначно как разработчиком, так и тем, кто будет ими пользоваться.
Если действия однотипные, например, «набрать ковш воды и вылить» или «взять яблоко и проверить, есть ли червоточина», то его записывают 1 раз и повторяют конечное число раз.
Когда все задания/этапы будут выполнены, они должны привести к желаемому результату.
Исполнители, система команд исполнителя (СКИ)
Алгоритм разрабатывается с учетом определенного исполнителя. Это означает, что инструкция для пользователя спутниковой антенны и рекомендации для инженера-настройщика будут совершенно разными, хотя в обоих случаях каждый этап будет элементарный.
Исполнитель – субъект/объект, который может выполнить команды данного алгоритма.
Исполнителем может быть живое существо и неживой механизм. Человек, животное, которое понимает команды, робот, станок, компьютер – все они могут быть исполнителями.
Компьютер (ПК) – автоматизированный исполнитель команд. Алгоритмы программ для ПК пишут на языках программирования (С++, Basic, Pascal, Delphi, Ассемблер, Фортран).
Для каждого типа и уровня исполнителей существует своя система команд исполнителя (СКИ).
Свойства алгоритмов
Независимо от того, разрабатывается ход приготовления яичницы или запуска космического корабля, они должны обладать 5 основными свойствами:
Понятность – процедура должна быть на языке, который понятен той категории исполнителей, для которых она пишется.
Для ребенка 2 лет обучение пользованию игрушкой будет происходить простыми словами, с минимумом этапов (возьми, нажми эту кнопочку, поставь на пол). А для ребенка 10 лет инструкция уже будет включать проверку и замену батареек, установку отпавшей части.
Точность – команды должны быть конкретными, понятными, однозначными.
Пример непонятного и неточного задания мы помним из сказки: “Пойди туда, не знаю куда. Принеси то, не знаю что”.
Пример бесконечного алгоритма
В этом примере нет конечных команд: вымыть руки и выключить воду. Пользователь по этой инструкции будет бесконечно мыть руки, точить воду.
Классификация алгоритмов
Если выполняемые действия идут одно за другим, то инструкция будет последовательной, линейной. Если же операции повторяются при разных условиях, то порядок действия будет меняться. Следует использовать различные виды алгоритмов.
Виды алгоритмов:
Чаще используют алгоритмы повторения с условием, так как идеальные условия встречаются редко.
Линейная модель подходит для простых задач, когда нет условий или повторений. Для нее важна последовательность команд алгоритма. Например, вычисление среднего арифметического, площади фигуры. В обычной жизни – это список действий, которые нужно выполнить, чтобы купить хлеб, сварить яйцо или сделать бутерброд.
Запишем схему линейного алгоритма (покупки чая):
Для многих задач важно выполнение определенного условия.
Пример алгоритма ветвления – если нужного сорта нет, то процесс покупки чая усложняется:
Эту же задачу можно описать при помощи циклического алгоритма, если есть повторение определенной операции.
Данный пример включает в себя ветвление «если» и повторение команд:
Цикличные инструкции следует писать так, чтобы не было вечного цикла или зацикливания – бесконечного повторения операции без достижения результата.
Виды записи алгоритмов
Самый простой способ записать алгоритм построчно – словесно. Но текстовая форма оформления подобных детальных инструкций не всегда наглядна и удобна из-за большого количества вспомогательных слов.
Легче воспринимается такой план, если его дополнять картинками.
Особенно неудобно описывать словами математические, физические и химические процессы. Без специальных символов, формул не обойтись. Поэтому используются отраслевые сокращения и обозначения.
Но все эти способы записи алгоритмов уступают формальному, схематическому. Именно такой обобщенный подход позволяет пользователям и исполнителям со всего мира лучше понимать друг друга.
Блок-схема – графическая форма представления алгоритмов при помощи геометрических объектов и стрелок.
Блок схема линейного алгоритма вычисления площади прямоугольника:
Алгоритм – это инструкция к решению определенной задачи. А на этом основании можно написать программу вычисления алгоритма, которая реализует данный вариант решения, плюс ее можно установить, проверить и выполнить на ПК.
Пример алгоритма на Turbo Pascal
При программировании на компьютерных языках используется такой же подход, как и при написании инструкций вручную.
Для примера попробуем программирование линейных алгоритмов при помощи языка Turbo Pascal.
Запустить среду программирования следующими шагами:
Меню Пуск → Все программы → Turbo Pascal
На экране монитора появится оболочка, которая позволяет освоить азы программирования и даже реализовывать непростые проекты.
Оболочка разработана под DOS, что объясняет необычную реализацию интерфейса.
Пишем самый простой алгоритм программы для выведения на экран слов приветствия.
На латинской раскладке набираем в синем окне такие команды:
program Test;
begin
write(‘Доброе утро!’);
Учитываем важные моменты при использовании языка Турбо Паскаль:
Как видим, в программе есть свои слова-команды, как в письменных алгоритмах. Слово program – как заголовок, название объекта, а тest – непосредственно название программы.
Началом является команда begin, end – окончанием, а между ними стоят операторы или команды-действия («write» – напиши на экране). А текст, который нужно выводить на экране берется в скобки и ’….’.
Чтобы запустить программу, следует нажать Ctrl+F9 или набор команд Run Run.
Если нет ошибок в командах, появится такой результат:
Чтобы выйти обратно, можно нажать любую кнопку клавиатуры.
При каждом запуске будет новая запись, на той же строке. Если заменить write на writeln, то текст будет выводиться в новой строчке:
Изучение алгоритмов не только позволяет применять их во всех сферах жизни, начиная с ежедневных домашних дел и заканчивая учебой. Это первый и один из важнейших шагов понимания работы программируемой техники, в том числе ПК. Понимание простейших, линейных алгоритмов, умение их создавать позволяет узнать, как компьютер обрабатывает данные, находит верный результат и выдает его. Далее следует осваивать варианты с ветвлением или повторением.
Без умения создавать алгоритмы в виде блок-схемы, знания их видов и принципов создания невозможно начать изучение языков программирования.
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Алгоритм – исполнитель
Детальные инструкции значительно упрощают решение сложных задач для исполнителя. А пошаговые рекомендации позволяют автоматизировать процесс. Каждый такой алгоритм создается для определенного исполнителя. Если им будет маленький ребенок, команды будут одними, если взрослый человек – другими, компьютер или робот – третьими.
Примеры задач из жизни и люди, которые их обычно решают:
Если вопрос касается профессиональной сферы, то работники опираются на должностные и рабочие инструкции, в них описан круг обязанностей и порядок их выполнения. Если же это социальные задачи, люди ориентируются на то, как это делалось в семье их родителей, как это делают другие люди или как описано в литературе.
Виды исполнителей, их особенности
Одной из основных классификаций является деление исполнителей по отношению к тому, как они выполняют. Одушевленных называют неформальными, потому что они понимают, что делают, могут анализировать и даже видоизменять команды при изменении условий. Неодушевленных – формальными исполнителями, так как они строго выполняют команды, механически, не понимая, что делают, не задумываясь над задачей или промежуточными итогами.
Хорошим примером формального исполнителя является любая программируемая система, иногда даже человек, который подходит к выполнению определенных задач бездумно, как робот, не только не волнуясь о результате, и не анализируя происходящее.
Алгоритм пишут, учитывая особенности того, для кого он предназначен. Для некоторых людей сухого набора команд мало, им нужны дополнительные инструменты (изображения, примеры). Инструкция будет разной, если написана она для конкретного Игоря Козакова или для учеников 6-класса. Точно также команды для бездомной собаки Жуля будут одни, а для дрессированных полицейских овчарок – другие.
Характеристики исполнителей
Перед написанием алгоритма следует определиться не только с конечной задачей, но и с особенностями исполнителей. Это позволит использовать правильные слова, а также учесть все факторы, которые могут повлиять на конечный результат.
СКИ – набор простейших команд, понятных данному исполнителю.
Перспективными исполнителями являются роботы, автоматы и компьютеры. Несмотря на формальность работы, их можно запрограммировать и «научить» очень и очень многому. Даже если это светофор, стиральная машинка, не говоря уже о роботах, космических кораблях, персональных или научных компьютерах.
Особенно удивительно выглядит компьютер, ведь он:
Пользователи ПК могут использовать готовые приложения, чтобы задать ту или иную команду своему смартфону, компьютеру или другой умной технике. Или же самостоятельно написать «внутренности», программный код, задавая приложению те характеристики и функции, которые нужны.
Учебная среда Исполнителя
Для того, что сделать мир программирования и алгоритмизации ярким и веселым, были разработаны различные приложения. Существует учебная среда Исполнитель Кумир для учащихся, в которую входят Чертежник, Робот, Редактор и другие.
Различные приложения отличаются интерфейсом и набором команд, но общий принцип у них одинаковый – пользователь учится писать инструкции для компьютерного исполнителя (робот, черепашка, чертежник и другие). Он дает ему команды, изучая программирование от единичных заданий, постепенно переходя от элементарных линейных алгоритмов до циклических с условиями. Обучение проходит в игровой форме, при помощи кнопок. Далее этап написания команд на русском языке. На финальном этапе ученик осваивает СКИ на языке программирования (на английском).
Если ученик/пользователь дает задание исполнителю, которое невозможно выполнить физически (непреодолимое препятствие), математически (деление на ноль) – запускается система отказов.
Сравнительная характеристика основных приложений:
Исполнитель «Черепашка»
При помощи простых команд и красочного интерфейса пользователь легко освоит построение алгоритмов. На первом этапе в игровой форме, используя готовые кнопки и цвета. На следующем уровне уже можно программировать, записывая команды на русском по всем правилам программирования.
Исполнитель «Робот»
На клеточном поле произвольно выставляется робот, который обозначается любым удобным символом (*, Р, ●, ♦, другими). Задания пишутся при помощи системы команд исполнителя Робот.
В этой учебной системе можно самому рисовать стены, выращивать клумбы, задавать маршрут прохождения. Можно закрашивать клетки, даже если они до этого были цветные. Делать это можно при помощи линейных алгоритмов, с разветвлением или с повторением цикличных команд.
Для программирования используются простейшие алгоритмы и элементы программирования (правила написания команд, условия, обязательные символы), которые применяются в большинстве компьютерных языков.
В случае ошибок система выдает отказ. Отказы могут быть в случае неправильного написания элемента программы, противоречивых команд или логических ошибок. Отказ в виде ответа Робота: «Не могу» (пройти через стену), «Не понимаю» (ошибочно написана команда) или результат не тот, что нужен (перепутаны горизонталь и вертикаль).
Составляем алгоритм для Робота
Как видно из этого примера, в некоторых случаях команды многократно повторяются. Тогда используют подзадачи и циклы.
Основная программа с именем подзадачи:
Алгоритм Рисунок
Начало
Алгоритм Узор (5 раз);
Конец.
Указав только имя подзадачи в теле программы, пользователь вызывает ее столько раз, сколько указано в скобках. Полный текст вспомогательного алгоритма описывается под основным.
Алгоритм Узор
Начало
конец.
Если не использовать подзадачи, которые повторяются много раз, то размер программы увеличится в десятки раз.
Чтобы выполнить движение, робот может выполнять команды проверки наличия стены на пути: Сверху/снизу/слева/справа свободно?
Используя условие «если», робот проверяет дорогу и только тогда идет:
(Снизу_свободно), то вниз (3)
Или условие «пока» есть куда идти (нет стены сверху), робот будет идти прямо вверх и сажать цветы.
Исполнитель «Чертежник»
Учебная система «Исполнитель Чертежник» используется для рисования графиков, чертежей в системе координат (x;y). Поле поделено на пиксели, в параметрах можно указать размер поля и количество точек по осям.
Перо – инструмент чертежника, его, как настоящее, можно поднимать и опускать на рисовальное поле, перемещать в нужное место, менять цвет и добавлять надпись. Если перо приподнято, то не остается следа, если опущено – за ним тянется линия.
Во время рисования видно труженика Чертежника, который выполняет команды. Но его иконку можно скрыть, тогда будет виден только карандаш.
Начинать работу следует с команды «использовать Чертежник». Писать можно одиночные команды, а можно целые серии. Правила написания программы соответствуют основам большинства компьютерных языков. Это облегчит в будущем изучение программированию, улучшит понимание процесса построения алгоритмов, начиная от линейных и заканчивая циклическими.
На следующем этапе можно перейти к написанию алгоритма на языке Pascal. Процесс построения аналогичен, только команды пишутся на языке программирования (на английском):
uses Drawman;
begin
PenUp;
ToPoint (1, 1);
PenDown;
ToPoint (1, 5);
ToPoint (3, 5);
ToPoint (2, 4);
ToPoint (3, 3);
ToPoint (1, 3);
end.
Освоив построение алгоритмов на родном языке, запомнив правила написания команд, пользователь с легкостью перейдет на задания, написанные на языке программирования.
Вспомогательные алгоритмы или процедуры
Во время работы с учебными исполнителями приходится часто выполнять однотипные команды или серии команд. Намного удобнее создать вспомогательные подзадачи или процедуры. Таким блокам команд присваивается имя и потом не нужно каждый раз повторять ту или иную последовательность операций, достаточно указать имя вспомогательной процедуры.
Процедуры, их характеристики: