Что такое систематическая погрешность как она может быть снижена

Систематическая погрешность

Систематическая погрешность

В зависимости от характера измерения систематические погрешности подразделяют на постоянные, прогрессивные и погрешности, изменяющиеся по сложному закону.

В зависимости от причин появления систематические погрешности подразделяют на инструментальные, погрешности метода измерений, субъективные и др.

Полезное

Смотреть что такое «Систематическая погрешность» в других словарях:

систематическая погрешность — Разность между математическим ожиданием результатов измерений и истинным (или в его отсутствие принятым опорным) значением. Примечание. Большее систематическое отклонение от принятого опорного значения находит свое отражение в большем значении… … Справочник технического переводчика

систематическая погрешность — 3.8 систематическая погрешность (bias): Разность между математическим ожиданием результатов измерений и истинным (или в его отсутствие принятым опорным) значением. Примечание 5 Большее систематическое отклонение от принятого опорного значения… … Словарь-справочник терминов нормативно-технической документации

систематическая погрешность — visuminė sistemingoji paklaida statusas T sritis chemija apibrėžtis Nuolatinės tyrimo arba bandymo rezultatų vidurkio ir sutartinės tikrosios vertės skirtumas. atitikmenys: angl. bias; bias error; error bias rus. постоянная погрешность;… … Chemijos terminų aiškinamasis žodynas

систематическая погрешность — sistemingoji paklaida statusas T sritis automatika atitikmenys: angl. repeatable error; systematic error vok. systematischer Anteil des Fehlers, m; systematischer Fehler, m rus. систематическая погрешность, f pranc. erreur permanente, f; erreur… … Automatikos terminų žodynas

систематическая погрешность — visuminė sistemingoji paklaida statusas T sritis Standartizacija ir metrologija apibrėžtis Nuolatinis tyrimo arba bandymo rezultatų vidurkio ir sutartinės tikrosios dydžio vertės skirtumas. atitikmenys: angl. bias; bias error rus. систематическая … Penkiakalbis aiškinamasis metrologijos terminų žodynas

систематическая погрешность — sistemingoji paklaida statusas T sritis Standartizacija ir metrologija apibrėžtis Paklaidos sandas, išliekantis pastovus, kartojant to paties dydžio matavimą, arba nuspėjamai kintantis. atitikmenys: angl. systematic error vok. systematischer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

систематическая погрешность — sistemingoji paklaida statusas T sritis Standartizacija ir metrologija apibrėžtis To paties matuojamojo dydžio be galo daug kartų pakartojamumo sąlygomis atliktų matavimų vidurkio ir tikrosios matuojamojo dydžio vertės skirtumas. atitikmenys:… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

систематическая погрешность — sistemingoji paklaida statusas T sritis chemija apibrėžtis Nekintanti arba dėsningai kintanti paklaida, gaunama daug kartų matuojant tą patį dydį. atitikmenys: angl. systematic error rus. систематическая погрешность … Chemijos terminų aiškinamasis žodynas

систематическая погрешность — sistemingoji paklaida statusas T sritis fizika atitikmenys: angl. systematic error vok. regelmäßiger Fehler, m; systematischer Fehler, m rus. систематическая погрешность, f pranc. erreur systématique, f … Fizikos terminų žodynas

систематическая погрешность — bias Систематическая ошибка, ведущая к тому, что усредненное значение серии результатов оказывается постоянно выше или ниже значений, полученных при применении эталонного метода отбора проб … Словарь кока-колы

Источник

Систематическая погрешность

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалом, прогрессивная технология — все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекаюших процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и т.д.

2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений.. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины — теории точности измерительных устройств.

3. Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т.д.

4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и

удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Способы обнаружения систематических погрешностей. Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например, Х1, Х2 и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого /-го наблюдения будем обозначать через 8., то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину 0, называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть сниженаЧто такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самого измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

где Р — измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся погрешности:

• зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

• связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

Источник

Что такое систематическая погрешность как она может быть снижена

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности измерений

Погрешность результата измерения (англ. error of a measurement) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Примечания:

Инструментальная погрешность измерения (англ. instrumental error) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность метода измерений (англ. error of method) – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.
Примечания:

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.
Примечание. Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); неправильной установки средств измерений, нарушения правил их взаимного расположения и др.

Субъективная погрешность измерения – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.
Примечания:

Неисключенная систематическая погрешность – составляющая погрешности результата измерений, обусловленная погрешностями вычисления и введения поправок на влияние систематических погрешностей или систематической погрешностью, поправка на действие которой не введена вследствие ее малости.
Примечания:

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Случайная погрешность измерения (англ. random error) – составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.

Абсолютная погрешность измерения (англ. absolute error of a measurement) – погрешность измерения, выраженная в единицах измеряемой величины.

Абсолютное значение погрешности (англ. absolute value of an error) – значение погрешности без учета ее знака (модуль погрешности).
Примечание. Необходимо различать термины абсолютная погрешность и абсолютное значение погрешности.

Относительная погрешность измерения (англ. relative error) – погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.
Примечание. Относительную погрешность в долях или процентах находят из отношений:

Рассеяние результатов в ряду измерений (англ. dispersion) – несовпадение результатов измерений одной и той же величины в ряду равноточных измерений, как правило, обусловленное действием случайных погрешностей.
Примечания:

Размах результатов измерений (англ. ) – оценка Rn рассеяния результатов единичных измерений физической n величины, образующих ряд (или выборку из n измерений), вычисляемая по формуле:

Среднее квадратическое отклонение результатов единичных измерений в ряду измерений (англ. experimental (sample) standard deviation) – характеристика S рассеяния результатов измерений в ряду равноточных измерений одной и той же физической величины, вычисляемая по формуле:

Среднее квадратическое отклонение среднего арифметического значения результатов измерений (англ. experimental (sample) standard deviation) – характеристика Sx рассеяния среднего арифметического значения результатов равноточных измерений одной и той же величины, вычисляемая по формуле:

Доверительные границы погрешности результата измерений – наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

Поправка (англ. correction) – значение величины, вводимое в неисправленный результат измерения с целью исключения составляющих систематической погрешности.
Примечание. Знак поправки противоположен знаку погрешности. Поправку, прибавляемую к номинальному значению меры, называют поправкой к значению меры; поправку, вводимую в показание измерительного прибора, называют поправкой к показанию прибора.

Поправочный множитель (англ. correction factor) – числовой коэффициент, на который умножают неисправленный результат измерения с целью исключения влияния систематической погрешности.
Примечание. Поправочный множитель используют в случаях, когда систематическая погрешность пропорциональна значению величины.

Точность результата измерений (англ. accuracy of measurement) – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.
Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность.

Неопределенность измерений (англ. uncertainty of measurement) – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине.

Погрешность метода поверки – погрешность применяемого метода передачи размера единицы при поверке.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешность воспроизведения единицы физической величины – погрешность результата измерений, выполняемых при воспроизведении единицы физической величины.
Примечание. Погрешность воспроизведения единицы при помощи государственных эталонов обычно указывают в виде ее составляющих: неисключенной систематической погрешности; случайной погрешности; нестабильности за год.

Погрешность передачи размера единицы физической величины – погрешность результата измерений, выполняемых при передаче размера единицы.
Примечание. В погрешность передачи размера единицы входят как неисключенные систематические, так и случайные погрешности метода и средств измерений.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения.

Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения.

Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
Примечание. Иногда вместо термина промах применяют термин грубая погрешность измерений.

Предельная погрешность измерения в ряду измерений – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.

Погрешность результата однократного измерения – погрешность одного измерения (не входящего в ряд измерений), оцениваемая на основании известных погрешностей средства и метода измерений в данных условиях (измерений).
Пример. При однократном измерении микрометром какого-либо размера детали получено значение величины, равное 12,55 мм. При этом еще до измерения известно, что погрешность микрометра в данном диапазоне составляет +/- 0,01 мм, и погрешность метода (непосредственной оценки) в данном случае принята равной нулю. Следовательно, погрешность полученного результата будет равна +/- 0,01 мм в данных условиях измерений.

Суммарное среднее квадратическое отклонение среднего арифметического значения результатов измерений – характеристика S рассеяния среднего арифметического результатов измерений, обусловленная влиянием случайных и неисключенных систематических погрешностей и вычисляемая по формуле:

Источник

Методы и способы повышения точности измерений*. Часть 2

После тщательно выполненного анализа, как правило, выявляют и оценивают отдельные составляющие погрешности измерений расчетными или расчетно-экспериментальными способами и определяют, какие составляющие погрешности измерений доминируют. В результате этой работы устанавливают, насколько снизится суммарная погрешность после того, как будет значительно уменьшена та или иная ее составляющая.

Пример. Пусть погрешность измерений складывается из составляющих Δ1 и Δ2, причем Δ2 = Δ1/2.

Примем закон распределения плотностей вероятностей для обеих составляющих одинаковым (например, нормальным), а значение вероятности, которой соответствуют границы Δ1 и Δ2, одним и тем же. Тогда суммарную погрешность можно найти по известной формуле квадратического суммирования:
Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена
Отсюда видно, что «подавив» погрешность Δ2, мы получим всего лишь десятипроцентный выигрыш в значении суммарной погрешности измерений. Поэтому, в данном случае, рассматривая метод повышения точности измерений, следует стремиться к «подавлению» именно погрешности Δ1.

Сегодня метрологи сходятся на том, что в большинстве практических ситуаций не удается оценить характеристики погрешности измерений с относительной погрешностью меньшей, чем на 20-25 %. Из этого, в частности, следует, что более или менее спокойно решаться проводить мероприятия, направленные на повышение точности измерений, можно лишь в тех случаях, когда, согласно оценкам, будет обеспечен выигрыш в точности, по крайней мере, в полтора-два раза.

Рассмотрим конкретные методы повышения точности измерений, которые используются в случаях доминирования:

При доминировании случайной составляющей погрешности измерений наиболее эффективным методом ее уменьшения является выполнение многократных наблюдений с последующим усреднением их результатов. Более подробно этот метод описан в РМГ 64, поэтому я лишь напомню его суть.

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Если случайная составляющая погрешности измерений доминирует, то при вышеуказанном условии коэффициент снижения погрешности измерений приближенно составляет Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Теперь поговорим о методах повышения точности измерений, которые используются в случаях, когда преобладают систематические составляющие погрешности измерений. Систематические погрешности возникают на различных этапах проведения измерений. На них же они и исключаются (см. рис. 1).

Остановимся на каждом из этих этапов более подробно.
При подготовке к измерениям, то есть на 1-м их этапе, проводят так называемую профилактику или устранение источников погрешностей. Под устранением источника погрешностей следует понимать как непосредственное его удаление (например, удаление источника тепла), так и защиту измерительной аппаратуры и объекта измерений от воздействия этого источника.

Внешние факторы, влияющие на погрешность измерений, можно разделить на виды:

С целью уменьшения погрешности измерений к условиям их проведения предъявляют жесткие требования. Для конкретных областей измерений, например, устанавливают единые условия, называемые нормальными.

В качестве мероприятия, предупреждающего появление температурной погрешности, широко применяют термостатирование, то есть обеспечение определенной температуры окружающей среды с допускаемыми колебаниями. Термостатируют большие помещения (лаборатории), небольшие помещения (камеры), отдельные СИ или их части (меры сопротивления, нормальные элементы, свободные концы термопар, кварцевые стабилизаторы частоты и т.п.).

В зависимости от требований, предъявляемых к температурному режиму, применяют различные способы термостатирования.

В первую очередь следует назвать естественное термостатирование, т.е. сохранение существующей в помещении температуры неизменной путем его теплоизоляции. Примером такого термостатирования могут служить некоторые помещения ВНИИМ им. Д.И. Менделеева в С-Петербурге, благодаря специальному устройству здания в его центральных помещениях сохраняется постоянная температура.

В настоящее время термостатирование во многих случаях заменяют кондиционированием воздуха. При кондиционировании обеспечивается поддержание на требуемом уровне не только температуры, но других параметров окружающего воздуха и, в первую очередь, влажности.

Термостатирование, а также кондиционирование воздуха являются хорошей защитой и от направленного действия тепла. Однако, неудачное расположение подогревателей в термостате или в термостатированной комнате, а также отсутствие устройств (мешалок и т.п.), обеспечивающих равномерное распределение тепла по всему объему, может само по себе стать источником погрешностей.

Влияние такого фактора, как изменение атмосферного давления, устранить непросто. В тех случаях, когда соблюдение определенных требований является обязательным, применяют барокамеры с регулируемым давлением. Обычно в этих камерах можно одновременно регулировать влажность и температуру.

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Система контроля метрологической пригодности СИ в процессе их эксплуатации и рекомендуемые способы обнаружения метрологической непригодности СИ более подробно изложены в МИ 2233-2000 «ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Основные положения».

В ряде случаев добиться уменьшения систематических погрешностей можно, выбрав более совершенное (точное) СИ. Такой метод повышения точности измерений носит название замена менее точного СИ наболее точное (приобретение или разработка специальных СИ). Он эффективен при доминирующих инструментальных составляющих погрешности измерений. Для достоверной оценки реального выигрыша в точности измерений характеристики погрешности того СИ, которое предполагается заменить, и того, которое предполагается использовать, должны быть выражены в сопоставимой форме. Такой формой может служить, например, класс точности СИ.

Уменьшения относительной погрешности можно добиться, выбрав СИ, для которых нормированы приведенные погрешности с таким верхним пределом измерений, чтобы ожидаемые значения измеряемой величины (показания) находились в последней трети диапазона измерений.

Составляющая погрешности измерения, обусловленная погрешностью применяемого СИ, как известно, называется инструментальной погрешностью измерения. Она обусловлена свойствами применяемых СИ и, в свою очередь, состоит из ряда составляющих, вызванных неидеальностью собственных свойств СИ (элементов и материалов, используемых в СИ), реакцией СИ на изменения влияющих величин и на скорость (частоту) изменения измеряемых величии, воздействием СИ на объект измерений, способностью СИ различать малые изменения измеряемых величин во времени и т.д.

Составляющие инструментальной погрешности измерений представлены на рис.2.
Часто замена менее точного СИ на более точное дает существенный эффект в случае доминирования основной погрешности СИ.

Если же доминируют дополнительные погрешности СИ, которые вызваны существенными отклонениями действительных значений внешних влияющих величин от их значений, принятых соответствующими нормативными документами в качестве нормальных, то применяют другой способ повышения точности измерений. Он называется ограничение условий применения СИ. Существенное ограничение условий эксплуатации СИ и связанное с этим уменьшение различных дополнительных погрешностей характерно для помещений так называемых центральных пунктов управления (ЦПУ) производствами с помощью различных АСУТП. В таких помещениях специальные кондиционеры поддерживают в узких интервалах температуру и влажность воздуха, а специальные электромагнитные экраны защищают от воздействия электромагнитных полей.

Индивидуальная градуировка СИ способ повышения точности измерений, который эффективен при доминирующих систематических составляющих погрешности СИ. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.

Градуировка СИ представляет собой процесс нанесения отметок на шкалы СИ, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц. Для термопар и термометров сопротивления систематическая составляющая погрешности при узком диапазоне измеряемых температур доминирует и остается практически неизменной в течение нескольких месяцев.

Такая погрешность может быть значительно снижена путем внесения в результаты измерений поправок, полученных при индивидуальной градуировке. Этот способ может быть успешно применен в ИИС и АСУТП.
Мы рассмотрели способы повышения точности измерений и мероприятия, с помощью которых исключают систематические погрешности на 1-м этапе измерений, а теперь рассмотрим способы исключения систематических погрешностей на 11-м этапе, то есть в процессе измерений.

Если при измерениях используются преобразователи электрических и неэлектрических величин, то для автоматической коррекции погрешности ряда таких преобразователей применяют метод обратногопреобразования.

Для реализации этого метода используют обратный преобразователь, реальная статическая функция преобразования которого совпадает с функцией, обратной номинальной характеристике преобразования СИ. Этот метод эффективен только в том случае, если обратный преобразователь значительно точнее прямого преобразователя.

На вход обратного преобразователя подают реальный выходной сигнал СИ. Разность двух сигналов (входной сигнал средства измерений минус выходной сигнал обратного преобразователя) соответствует погрешности СИ и может быть использована для выработки корректирующего сигнала как в системе самонастройки, так и в системе введения поправок. Обратный преобразователь в данном методе играет роль как бы многозначной меры, по которой корректируется статическая характеристика прямого преобразователя. Метод обратного преобразования позволяет уменьшать в зависимости от используемого алгоритма коррекции аддитивную и мультипликативную погрешности СИ.

Метод обратного преобразования обладает следующими особенностями:
а) в состав системы коррекции входит эталонный обратный преобразователь, от точности которого существенно зависит точность коррекции;
б) корректирующий сигнал соответствует суммарной погрешности СИ в точке диапазона измерений, соответствующей значению входной величины, т.е. коррекции подвергнуты инструментальные погрешности любого
происхождения;
в) коррекцию осуществляют непрерывно в течение рабочего режима (режима измерений). Пример использования этого метода приведен в приложении В в рекомендациях РМГ64.

Метод замещения метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.

Пример. При измерении электрического сопротивления на мосте постоянного тока этот мост уравновешивают при включенном измеряемом сопротивлении rх, после чего вместо rх включают переменную эталонную меру. Изменяя значение меры, добиваются равновесия моста и по значению эталонной меры определяют измеряемое сопротивление rх. Благодаря такому измерению удается исключить влияние неполной уравновешенности моста, термоконтактных э.д.с. и других причин, вызывающих систематические погрешности.

Метод противопоставления заключается в том, что об отличии сравниваемых размеров физических величин (массы, электрического сопротивления,электрической емкости, индуктивности и др.) судят по показанию специального двухканального компаратора, на оба входа которого сравниваемые физические величины действуют одновременно. Обусловленная несимметрией компаратора составляющая погрешности измерений часто является доминирующей. Она может быть уменьшена методом противоположного влияния.

Пример. Измерение массы на равноплечих весах (см. рисунок 3)

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

одинаковы, то тх = т0. Если же /1 ≠ /2 (например, из-за технологического разброса длин плеч при их изготовлении), то при взвешивании каждый раз возникает систематическая погрешность

Что такое систематическая погрешность как она может быть снижена. Смотреть фото Что такое систематическая погрешность как она может быть снижена. Смотреть картинку Что такое систематическая погрешность как она может быть снижена. Картинка про Что такое систематическая погрешность как она может быть снижена. Фото Что такое систематическая погрешность как она может быть снижена

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)