Что такое строма в пластидах

Пластиды: общая характеристика, строение, виды и функции

Содержание:

Пластиды — специализированные органоиды, встречающиеся в живых эукариотических клетках растений. Для животных и грибов не характерны.

Виды пластидов

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Совокупность пластид в клетке называют пластидомом, хотя в зрелой клетке содержатся пластиды только одного вида. В зависимости от окраски выделяют следующие пластиды:

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Происхождение и трансформация пластид

Пластиды происходят одинаково – из пропластид. Эволюционными предками ученые считают бактерии, которые были поглощены другой бактерией эндоцитозом. Первая бактерия, скорее всего, могла преобразовывать энергию света.

Могут превращаться друг в друга по ситуации. В условиях слабой освещенности хлоропласты могут преобразовываться в лейкопласты. Хромопласты же могут образовываться из зеленых и бесцветных пластид в случае накопления каротиноидов.

Строение хлоропласта

Размер и число хлоропластов зависит от вида растения и клетки, где они расположены. На величину и очертания влияют условия среды и таксономичекая принадлежность растений. Например, у высших растений хлоропласты линзовидные. Крупные и богатые хлорофиллом, магнийсодержащим пигментом, органоиды у растений теневой зоны. У водорослей хлорофилл назван хроматофором и может принимать следующие формы: шаровидная, спиральная, чашевидная и другие.

Положение органоидов в клетке может меняться, так как они не закреплены, однако, чаще всего хлоропласты расположены близ клеточной стенки. Это нужно для того, чтобы улавливать свет.

Хлоропласты имеют двумембранную оболочку, которая отграничивает содержимое органоида от цитоплазмы. Мембраны не несут другие органоиды. У высших растений сильно развита внутренняя мембранная поверхность, которая образует плоские мешки – тилакоиды или более вытянутые – ламеллы. Несколько плотно собранных в стопки тилакоидов образуют граны. Важно: все тилакоиды расположены параллельно друг другу. На их стенках расположены молекулы хлорофилла. Граны связаны между собой тилакоидами стромы.

Строма – жидкая часть пластидов, где располагаются все части органоида.

Строение хромопласта

Встречаются в клетках лепестков, плодов, корнеплодах. Хромопласты разнообразны по форме и меньше хлоропластов. Система выростов внутренней мембраны не развита. Внутри пластида содержится пигменты желтого, оранжевого и красного цвета.

Строение лейкопласта

Лейкопласты – бесцветные пластиды. Встречаются в частях растениях, спрятанных от света, например в корнях, клубнях, семенах. Эти пластиды имеют шаровидную, чашевидную форму, но она может свободно меняться. Система выростов внутренней мембраны развита слабо. Тилакоиды одиночные, располагаются без особой ориентации в пространстве. Во всем остальной лейкопласты схожи с хлоропластами.

Выделяется несколько видов лейкопластов по запасаемым веществам

Функции пластидов

Пластиды

Функции

Фотосинтез – образование органических веществ из неорганических с использованием энергии света

Связаны с синтезом и накоплением запасных веществ

Окрашивают различные части растений, что важно для привлечения насекомых-опылителей

Пластиды поддерживают жизнедеятельность автотрофных клеток растений. Три вида органоидоидов отвечают за свои процессы, четко «делят обязанности», а в случае неблагоприятных условий трансформируются в необходимый для выживания органоид.

Источник

Строма – определение и функция

Определение стромы

Строма обычно относится к заполненному жидкостью внутреннему пространству хлоропластов, окружающих тилакоиды и граны. Первоначально считалось, что строма просто обеспечивает поддержку пигментированных тилакоидов. Однако теперь известно, что строма содержит крахмал, хлоропласт ДНК и рибосомы, а также все ферменты, необходимые для светозависимых реакций фотосинтез также известный как Цикл Кальвина.

Происходя от греческого слова для слоя или покрытия кровати, строма может также относиться к другим поддерживающим структурам, таким как соединительные ткани в органах или грибке ткань это несет споры.

Строение хлоропласта строма

Микроскопическое исследование хлоропласта выявляет некоторые очевидные особенности. Он состоит из внешней мембраны и сложной сети внутренних мембран, образующих стопки дискообразных структур, называемых гранами. Различные граны связаны друг с другом через мембранные отростки.

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Хлоропласты произошли от свободно живущих прокариот, которые сформировали эндосимбиотические отношения с некоторыми эукариотическими клетками. Следовательно, строма продолжает содержать ДНК и рибосомы для осуществления синтеза белка. Эти белки включают те, которые важны в светозависимых реакциях фотосинтеза, а также в реакциях, которые фиксируют неорганические минералы, такие как нитраты, в органических молекулах.

Функция Хлоропласт Строма

Функция в фотосинтезе

Строма сначала начинает играть роль в фотосинтезе, когда энергия света, захваченная молекулами пигмента, преобразуется в химическую энергию через цепь переноса электронов.

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Наиболее важным ферментом в реакциях, не зависящих от света, или цикла Кальвина, является RuBisCO или рибулозо-1,5-бисфосфат (RuBP) карбоксилаза. Этот фермент катализирует первую стадию светозависимых реакций, включающих фиксацию углерода. RuBisCO улавливает двуокись углерода в атмосфере, которая диффундирует в строму хлоропласта, и фиксирует ее в форме органического вещества. молекула, Каждая молекула СО2 объединяется с одной молекулой RuBP, содержащей пять атомов углерода, в результате чего образуются две молекулы фосфоглицерата, которые являются трехуглеродными молекулами.

Цикл Кальвина имеет еще две ступени, которые происходят в строме – восстановление фосфоглицерата и регенерация RuBP. Эти шаги включают использование ATP и NADPH. В целом, свето-независимые реакции используют две молекулы НАДФН и три молекулы АТФ, чтобы зафиксировать одну молекулу атмосферного CO2.

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Функция в внутриорганной сигнализации

Хлоропласты являются полуавтономными, поскольку они содержат свой собственный геном, но также импортируют ряд белков и небольших молекул из цитоплазма клетки. Хотя изначально они были свободноживущими автотрофами, с течением времени некоторые их гены были перенесены в ядро ​​хозяина. Эти гены слегка модифицированы, так что белки нацелены на хлоропласт и, по-видимому, находятся под комбинированной регуляцией как ядра, так и хлоропласта. Передача сигналов от ядра к пластиде называется антероградной передачей сигналов, а сигналы, идущие к ядру, называются ретроградными сигналами. Оба этих сигнала, по-видимому, опосредованы через стромулы, которые также играют роль в коммуникации между двумя пластидами.

Calvin Cycle: свет-независимые реакции

Строма является местом для трех этапов цикла Кальвина – фиксации, восстановления и регенерации углерода.

Фиксация углерода начинается с реакции между одной молекулой CO2 и одной молекулой RuBP. Эти шесть атомов углерода и две фосфатные группы собираются вместе, образуя две молекулы фосфоглицерата, трехуглеродную молекулу, содержащую один фосфатная группа, Эту реакцию повторяют трижды, чтобы получить шесть молекул фосфоглицерата.

На следующем этапе фосфоглицерат принимает электроны с образованием глицеральдегид-3-фосфата (G3P). Движущей силой этой реакции восстановления является преобразование NADPH в NADP + и ATP в ADP. Таким образом, ADP и NADP + регенерируются для использования в светозависимых реакциях.

Это оставляет один последний шаг – регенерация RuBP. Из шести молекул G3P, полученных на предыдущем этапе, пять используются в реформировании RuBP, а шестая экспортируется из хлоропласта для получения глюкозы.

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Примеры животных Строма

В то время как строма в каждой ткани или органе выполняет некоторые общие функции, такие как транспортировка топлива и метаболитов, а также структурная поддержка, в некоторых органах они выполняют специфические функции. Строма в эндокринные железы поддерживают образование гормонов в фолликулах и долях органа. В тимусе строма влияет на дифференцировку Т-клеток посредством положительного или отрицательного отбора. Органы, которые должны быстро реагировать на меняющиеся требования организм, такие как костный мозг или радужная оболочка глаза, также нужна специализированная строма.

Строма костного мозга

Строма костного мозга не участвует напрямую в кроветворение, но создает микросреду, которая усиливает активность клеток, участвующих в формировании кровь, Строма продуцирует факторы роста, содержит клетки, участвующие в метаболизме костей, содержит жировые клетки, а также макрофаги. Макрофаги особенно важны, потому что они участвуют в обмене эритроцитов и обеспечивают железо, необходимое для производства гемоглобина.

Строма ириса

Человеческая радужка начинает формироваться в первом триместре беременности и является одним из немногих внутренних органов тела, которые можно легко наблюдать. Радужная оболочка состоит из пигментированного эпителия вместе с мышцами, необходимыми для сжатия или расширения зрачка. Эти клетки выполняют основную функцию радужной оболочки и поддерживаются сосудистой стромой с высоким содержанием сосудов, рыхлым и прерывистым слоем соединительной ткани, содержащим связки и пигментообразующие клетки. Наличие пигмента экранирует падающий на глаз свет и позволяет лишь некоторым из них проходить через зрачок, образуя изображение на сетчатке. Эта пигментация определяется плотностью и наличием меланина глубоко в строме с коричневым глаза возникающие в результате сильной пигментации, и люди, имеющие синие ирисы, производят очень мало пигмента.

викторина

1. Из чего сделаны граны в хлоропластах?A. Внешние мембраносвязанные белкиB. Стеки внутренних мембранных структурC. хлорофиллD. Все вышеперечисленное

Ответ на вопрос № 1

В верно. Грана состоит из стеков тилакоидов, которые образуются при инвагинациях внутренней мембраны в хлоропластах. В то время как хлорофилл существует как часть фотосистем, использующих световую энергию, грана – это больше, чем просто совокупность пигментов.

2. Что из этого НЕ является функцией стромы хлоропласта?A. Реакция на стрессB. Внутриклеточная сигнализацияC. Высвобождение электронов высоких энергий при взаимодействии с фотонамиD. Все вышеперечисленное

Ответ на вопрос № 2

С верно. Выделение электронов высоких энергий является чисто функцией реакционных центров в тилакоидах. Хотя строма участвует в обеспечении протонов во время цепи переноса электронов, они не участвуют напрямую в высвобождении электронов высокой энергии. Строма была вовлечена как в реакцию на стресс, так и во внутриклеточную передачу сигналов посредством образования пальцевидных выпячиваний.

3. Что из этого НЕ является функцией стромы в тканях животных?A. Структурная поддержкаB. Кислородный транспортC. Секреция факторов ростаD. Ни один из вышеперечисленных

Ответ на вопрос № 3

D верно. Строма в тканях животных поддерживает орган различными способами, включая обеспечение структурной поддержки, транспортировку кислорода через кровеносные сосуды и удаление продуктов метаболизма. Часто они также выделяют цитокины и другие факторы роста. Следовательно, все три варианта являются функциями стромы в тканях животных.

Источник

Пластиды строение и функции

Пластиды строение и функции

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидахПластиды

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова|слова «plastos», что в переводе означает «вылепленный».

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Всё|Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погружённых в строму или матрикс.

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты – это зелёные пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца|тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка|белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна|видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощённые мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причём некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Хромопласты – пластиды, окраска которых бывает жёлтого, оранжевого или красного цвета|цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную|характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.

Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны|характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах|семёнах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.

Всё|Все виды пластид имеют общее|общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зелёных листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев. В каждой определённой клетке растения может быть только один вид пластид.

Видео по теме : Пластиды строение и функции

Пластиды строение и функции

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Многие примерно знают, что такое пластиды, со школьной скамьи. В курсе ботаники говорится, что в растительных клетках пластиды могут быть разных форм, размеров и выполняют в клетке различные функции. Эта статья напомнит о структуре пластид, их видах и функциях тем, кто давно окончил школу, и будет полезна всем, кто интересуется биологией.

Строение

На картинке внизу схематически представлено строение пластидов в клетке. Независимо от её вида, у неё есть внешняя и внутренняя мембрана, выполняющие защитную функцию, строма — аналог цитоплазмы, рибосомы, молекула ДНК, ферменты.

В хлоропластах присутствуют особые структуры — граны. Граны формируются из тилакоидов — структур, похожих на диски. Тилакоиды принимают участие в синтезе АТФ и кислорода.

В хлоропластах в результате фотосинтеза формируются крахмальные зерна|зёрна.

Лейкопласты не пигментированы. В них не присутствуют тилакоиды, они не принимают участия в фотосинтезе. Большая|Большая часть лейкопластов сконцентрирована в стебле|стебле и корне растения.

Хромопласты имеют в своём составе липидные капли — структуры, содержащие липиды, необходимые для снабжения структуры пластид дополнительной энергией.

Пластиды могут быть разных цветов, размеров и форм. Размеры их колеблются в пределах 5-10 мкм. Форма обычно овальная или круглая, но может быть и любой|любой другой.

Виды пластид

Пластиды могут быть бесцветными (лейкопласты), зелёными (хлоропласты), жёлтыми или оранжевыми (хромопласты). Именно хлоропласты придают листьям растений зелёную окраску.

Другая разновидность пластид, хромопласты, отвечает за жёлтую, красную или оранжевую окраску.

Бесцветные пластиды в клетке выполняют функцию хранилища питательных веществ. В лейкопластах содержатся жиры, крахмал, белки|белки и ферменты. Когда растение нуждается в дополнительной энергии, крахмал расщепляется на мономеры — глюкозу.

Лейкопласты при определённых условиях (под действием солнечного света или при добавлении химических веществ) могут превращаться в хлоропласты, хлоропласты преобразуются в хромопласты, когда хлорофилл разрушается, и в окраске начинают преобладать красящие пигменты хромопластов — каротин, антоциан или ксантофилл. Это превращение заметно осенью, когда листья и многие плоды меняют цвет из-за разрушения хлорофилла и проявления пигментов хромопластов.

Функции

Как говорилось выше, пластиды могут быть разными, и их функции в растительной клетке зависят от разновидности.

Лейкопласты служат в основном для хранилища питательных веществ и поддержания жизнедеятельности растения за счёт способности запасать и синтезировать белки|белки, липиды, ферменты.

Хлоропласты играют ключевую роль в процессе фотосинтеза. При участии сконцентрированного в пластидах пигмента хлорофилла происходит преобразование углекислого газа и молекул воды|воды в молекулы глюкозы и кислорода.

Хромопласты благодаря яркой окраске привлекают насекомых для опыления растений. Исследование функций этих пластид до сих пор продолжается.

Источник

Пластиды

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Полезное

Смотреть что такое «Пластиды» в других словарях:

ПЛАСТИДЫ — (от греч. plastos вылепленный) цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды хлоропласты, бесцветные лейкопласты, различно окрашенные хромопласты; … Большой Энциклопедический словарь

ПЛАСТИДЫ — (греч. plastides создающие, образующие, от plastos вылепленный, оформленный), органоиды эукариотной растит, клетки. Хорошо различимы в световой микроскоп. Каждая П. ограничена двумя элементарными мембранами; для многих характерна б. или м.… … Биологический энциклопедический словарь

ПЛАСТИДЫ — ПЛАСТИДЫ, БИОПЛАСТЫ или ЛЕЙЦИТЫ Морфологическая составная часть растительных клеток, состоящ. из значительного количества телец различной величины и формы, лежащ. около ядра. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

Пластиды — * пластыда * plastids специфические самореплицирующиеся органеллы (см.), локализованные в цитоплазме эукариотических клеток растений. В зависимости от способности связывать пигменты и функциональных особенностей П. делятся на бесцветные… … Генетика. Энциклопедический словарь

пластиды — (от греч. plastós вылепленный), цитоплазматические органеллы растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластидов. У высших растений зелёные пластиды хлоропласты, бесцветные лейкопласты, различно окрашенные … … Энциклопедический словарь

Пластиды — (от др. греч. πλαστός вылепленный) органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной … Википедия

пластиды — plastidės statusas T sritis augalininkystė apibrėžtis Bespalviai arba spalvoti organoidai, esantys autotrofinių augalų citoplazmoje ir atliekantys organinių medžiagų (krakmolo, riebalų ar baltymų) sintezę. Pagal pigmentacijos ir funkcijos… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Пластиды — иначе лейциты морфологическая составная часть растительных клеток. Кроме плазмы и ядра, последние обыкновенно (исключение составляют лишь грибы) содержат еще более или менее значительное количество телец различной величины и формы, лежащих в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ПЛАСТИДЫ — (от греч. plastоs вылепленный), цитоплазматич. органеллы растит. клеток. Нередко содержат пигменты, обусловливающие окраску П. У высш. р ний зелёные П. хлоропласты, бесцветные лейкопласты, различно окрашенные хромопласты; у большинства водорослей … Естествознание. Энциклопедический словарь

пластиды — бесцветные или окрашенные двумембранные органеллы клетки, имеющие собственную ДНК и рибосомы, а также выраженную в той или иной степени систему тилакоидов. Способны к размножению путем деления пополам. Выполняют разные функции. В клетках высших… … Анатомия и морфология растений

Источник

Пластидная система

Что такое строма в пластидах. Смотреть фото Что такое строма в пластидах. Смотреть картинку Что такое строма в пластидах. Картинка про Что такое строма в пластидах. Фото Что такое строма в пластидах

Для растительных клеток типична еще одна система органоидов, которой нет в клетках животных — это пластидная система.

Обычно пластиды — крупные тельца, хорошо видимые в световой микроскоп.
Каждая пластида окружена собственной оболочкой, состоящей из 2-х элементарных мембран. Внутри пластиды различают мембранную систему и основное достаточно гомогенное вещество — строму.

Зрелые пластиды обычно классифицируют по окраске, обусловленной пигментным составом. Выделяют три типа пластид:

Окрашенные в другие цвета (обычно желтый, оранжевый, красный) — хромопласты.

Пластиды каждого типа имеют свое строение и выполняют специфические функции. Однако возможны переходы одного типа в другой, своеобразные взаимопревращения пластид. Это и дает основания объединить их в единую систему. Такая система — (совокупность) пластид клетки называется пластидом.

Пластиды всех типов образуются из пропластид.

Пропластиды бесцветные тельца, несколько крупнее митохондрий. В больших количествах они встречаются в эмбриональных (меристематических) клетках. Пропластиды имеют гомогенную строму и неразвитую мембранную систему, имеются лишь небольшие инвагинации (впячивания) внутренней мембраны.
Пластиды зрелых клеток, сохранившие структуру пропластид, называют лейкопластами. Как и пропластиды, лейкопласты бесцветны и не содержат в строме пигментов.

При изготовлении препаратов лейкопласты легко повреждаются и расплываются; кроме того, они обладают показателем преломления почти таким же, как у цитоплазмы, поэтому их бывает трудно обнаружить в световой микроскоп.
Лейкопласты могут иметь разнообразную форму: эллипсоидную, амебоидную, гантелевидную, но чаще всего они шаровидны.

Лейкопласты содержатся в клетках бесцветных органов и тканей; сравнительно богаты ими семена и подземные органы.

Нередко лейкопласты выполняют запасающую функцию. Например, они обладают способностью образовывать крахмал из притекающей к ним глюкозы. Обычно крахмал, отлагающийся в лейкопластах, имеет вид зерен и называется вторичным. Первичный же крахмал образуется в хлоропластах в процессе фотосинтеза. Лейкопласты, накапливающие крахмал, называют амилопластами.

Встречаются и лейкопласты запасающие белки. Наименее распространены лейкопласты, заполненные жиром.

Хлоропласты — пластиды высших растений, в которых протекает фотосинтез. Зеленую окраску этим пластидам придает пигмент хлорофилл (точнее хлорофиллы разных типов), однако кроме хлорофилла в хлоропластах содержатся пигменты, относящиеся к группе каротиноидов: оранжевый — каротин и желтый — ксантофилл. Правда, на свету они маскируются хлорофиллом.

Хлоропласты растений обычно имеют форму диска (двояковыпуклой линзы) средним диаметром 4 — 5 мкм. Находятся они в паренхимных клетках мякоти листьев и других зеленых частей высших растений. Число их в клетке, как правило, составляет 25 — 50 шт. Общая численность хлоропластов в растении громадна. Только в одном квадратном мм листа их около 500000.

Внутренняя структура хлоропласта довольно сложна. Строма пронизана развитой системой мембран, имеющих форму плоских вытянутых пузырьков и каналов. Эти внутренние мембраны стромы называются тилакоидами или ламеллами. Считается, что тилакоиды образуют единую систему. Как правило, тилакоиды собраны в стопки, так называемые граны, напоминающие столбики монет. Тилакоиды отдельных гран связаны между собой тилакоидами стромы (или межгранными тилакоидами). Пигменты хлорофиллы и каротиноиды встроены в тилакоидные мембраны.

Именно здесь, на мембранах ламелл, происходят световые реакции фотосинтеза — поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов.

Темновые реакции фотосинтеза протекают вне гран, с помощью ферментов стромы. Первое органическое вещество — глюкоза, образующаяся в процессе фотосинтеза, подвергается большому числу перестроек и дает начало всему многообразию органических веществ, синтезируемых в растении и составляющих его тело. Ряд этих превращений происходит тут же, в строме хлоропласта, где имеются ферменты для образования сахаров, крахмала, жиров, а также все необходимое для синтеза белков.
Сахара могут переходить в другие структуры клетки, либо здесь же, прямо в хлоропластах, из них синтезируется крахмал. Этот крахмал откладывается в виде зерен и называется первичным ассимиляционным крахмалом. Вторичный крахмал, как мы уже знаем, откладывается в амилопластах.

Хлоропласты способны перемещаться по клетке. На слабом свету они концентрируются под стенкой, обращенной к свету. При этом они обращаются к свету своей большей поверхностью. Если свет слишком интенсивен, они поворачиваются к нему ребром и выстраиваются вдоль стенок параллельных лучам света. Такие перемещения хлоропластов называются фототаксисом.

Хлоропласты обладают известной автономией в системе клетки — это полуавтономные органеллы в известном отношении напоминающие бактерий. Например, рибосомы как бактерий, так и хлоропластов на одну треть меньше рибосом эукариот. Синтез белка на рибосомах бактерий и хлоропластов подавляется антибиотиком хлорамфениколом, не оказывающим подобного действия в клетках эукариот. Кроме того, и бактерии, и хлоропласты имеют один или несколько нуклеоидов, содержащих тяжи ДНК. ДНК пластид и бактерий организованы сходным образом, а именно: не окружена мембраной, имеет кольцевую форму. И, наконец, хлоропласты способны размножаться простым делением с помощью перетяжки.

Вывод

Генетические код пластидной ДНК в настоящее время изучается в нескольких лабораториях. Однако, уже сейчас ясно, что образование хлоропластов и синтез находящихся в них пигментов в значительной степени контролируется хромосомой ДНК. Малопонятным остается взаимодействие хромосомной ДНК с ДНК хлоропластов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *