Что такое буфер в медицине
Что такое буфер в медицине
Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Для обеспечения стационарного состояния у всех организмов выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды. Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций организма человека и животных называется гомеостазом.
Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса. Для нормальной жизнедеятельности большинства клеток необходимы достаточно узкие пределы рН (6,9 – 7,8), и организм вынужден постоянно осуществлять нейтрализацию образующихся кислот. Этот процесс выполняют буферные системы, которые связывают избыток ионов водорода и контролируют их дальнейшие перемещения в организме. Буферные системы играют очень важную роль, т.к. в результате различных метаболических процессов в организме постоянно образуются различные кислоты, которые сразу же нейтрализуются буферными системами: гидрокарбонатной, фосфатной, белковой и гемоглобиновой.
Главной буферной системой организма является гидрокарбонатный буфер, состоящий из Н2СО3 и NaHCО3. При рН около 7,4 в организме преобладает гидрокарбонат-ион, и его концентрация может в 20 раз превышать концентрацию угольной кислоты. По своей природе угольная кислота очень нестойкая и сразу же после образования расщепляется на углекислый газ и воду. Реакции образования и последующего быстрого расщепления угольной кислоты в организме настолько совершенны, что им часто не придают особого значения. Эти реакции катализируется ферментом карбоангидразой, который находится в эритроцитах и в почках. Особенность гидрокарбонатной буферной системы состоит в том, что она открыта. Избыток ионов водорода связывается с гидрокарбонат-ионом, образующийся при этом углекислый газ стимулирует дыхательный центр, вентиляция лёгких повышается, а излишки углекислого газа удаляются при дыхании. Так в организме поддерживается баланс рН. Чем больше в клетках образуется ионов водорода, тем больше расход буфера. На этом этапе метаболизма подключаются почки, которые выводят избыток ионов водорода, и количество гидрокарбоната в организме восстанавливается.
Фосфатный буфер может действовать как в составе органических молекул, так и в качестве свободных ионов. Одна его молекула способна связывать до трёх катионов водорода. Белки могут присоединять к своей полипептидной цепочке как кислотные, так и основные группы.
Буферная ёмкость белковой буферной системы может охватывать широкий диапазон рН. В зависимости от имеющейся величины рН она может связывать как гидроксильные группы, так и ионы водорода. Третья часть буферной ёмкости крови приходится на гемоглобин. Каждая молекула гемоглобина может нейтрализовать несколько ионов водорода. Когда кислород переходит из гемоглобина в ткани, способность гемоглобина связывать ионы водорода возрастает и наоборот: когда в лёгких происходит оксигенация гемоглобина, он теряет присоединённые ионы водорода. Освободившиеся ионы водорода реагируют с гидрокарбонатом, и в результате образуется углекислый газ и вода. Образовавшийся углекислый газ удаляется из лёгких при дыхании.
Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННb) и его калиевой соли (КНb). В слабощелочных растворах, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и являются донорами Н+ или К+. Эта система может функционировать самостоятельно, но в организме она тесно связана с гидрокарбонатной. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания: КНb + Н2СО3 ↔ ННb + КНСО3. В легких гемоглобин, напротив, ведет себя, как кислота, предотвращая защелачивание крови после выделения углекислоты.
Таким образом, механизм регуляции кислотно-основного равновесия крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем.
БУФЕРНЫЕ РАСТВОРЫ
БУФЕРНЫЕ РАСТВОРЫ (буферные смеси, буферы) — растворы, содержащие буферные системы и обладающие вследствие этого способностью поддерживать pH на постоянном уровне. Б. р. применяются для сохранения активной реакции среды (см.) на определенном неизменном уровне, если тот или иной процесс (напр., выращивание культуры бактерий, проведение ферментативной реакции и т. п.) должен быть проведен при постоянном pH; для определения водородного показателя (см.) — в качестве стандартных растворов с известными и устойчивыми значениями pH и в других случаях лабораторной практики.
Б. р. обычно готовят путем растворения в воде взятых в соответствующих пропорциях слабой кислоты и ее соли, образованной щелочным металлом, частичной нейтрализацией слабой кислоты сильной щелочью или слабого основания сильной кислотой, растворением смеси солей многоосновной кислоты. Величины pH приготовленных таким образом Б. р. незначительно меняются с температурой. Б. р., представляющие собой смеси слабых оснований с их солями, образованными сильными кислотами, ввиду значительной зависимости их pH от температуры, как правило, применяются на практике редко. Общая концентрация компонентов Б. р., употребляемых для практических целей, в большинстве случаев находится в пределах 0,05— 0,2 н. Такого рода Б. р. проявляют буферное действие, если отношение концентраций составляющих их слабых кислот к концентрациям соответствующих солей не меньше 0,1 и не больше 10. Интервал значений pH, в к-ром Б. р. обладает устойчивыми буферными свойствами, лежит в пределах рК±1 (рК — отрицательный десятичный логарифм константы диссоциации слабой кислоты, входящей в состав Б. р., т. е. рК= —lgK). Т. о., для приготовления Б. р., проявляющего буферное действие, напр, в области pH=3—5, следует взять кислоту с рК=4.
СОСТАВ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ БУФЕРНЫХ РАСТВОРОВ, ПРИМЕНЯЕМЫХ В ЛАБОРАТОРНОЙ ПРАКТИКЕ
1. Глициновый буфер Серенсена
Соляная кислота — у
2. Ацетатный буфер Вальполя
Уксусная кислота — х
3. Фосфатный буфер Серенсен
4. Боратный буфер Палича
5. Вероналовый буфер Михаэлиса
Соляная кислота — y
6. Карбонатный буфер Кольтгоффа
Соляная кислота — х
7. Универсальный вероналовый буфер Михаэлиса
Соляная кислота — х
Соляная кислота — х
Количества компонентов, необходимых для приготовления определенного Б. р., рассчитывают по уравнению соответствующей буферной системы или находят с помощью специальной таблицы (см. выше).
При пользовании таблицей следует иметь в виду: В левом вертикальном столбце перечислены наименования Б. р. и их составных частей (x, y).
Во всех горизонтальных рядах, соответствующих тому или иному Б. р., верхняя цифра обозначает искомые значения pH, нижние цифры (или цифра) — объем (в мл) составных частей (части) Б. р. (z, у). Значения х и у соответствуют объемам (в мл) каждого из компонентов Б. р. Напр., для получения Б. р. с pH 1,15 (второй цифровой столбец вверху) следует взять 1,0 мл раствора глицина и 9,0 мл HCl (из расчета приготовления 10,0 мл смеси).
Глициновый буфер Серенсена представляет смесь соответствующих объемов 0,1 М раствора глицина в 0,1 М растворе NaCl и 0,1М раствора HCl. Ацетатный буфер Вальполя — это смесь 0,2 М раствора уксусной к-ты и 0,2М раствора ее натриевой соли. Фосфатный буфер Серенсена готовят смешиванием М/15 растворов NaH2PO4 и Na2HPO4. Боратный буфер Палича — смесь соответствующих объемов 0,2 М раствора борной к-ты и 0,05 М раствора буры. Для приготовления вероналового буфера Михаэлиса используют 0,1 М раствор Na-веронала и 0,1 М раствор HCl.
Для приготовления карбонатного буфера Кольтгофа на каждые 50 мл 0,1 М раствора углекислого натрия берут х мл 0,1 М раствора HCl и доводят объем полученной смеси до 100 мл.
Для приготовления универсального вероналового буфера Михаэлиса растворяют в воде 9,714 г ацетата натрия (CH3COONa-3H2O) и 14,714 г диэтил барбитурата натрия. Объем раствора доводят дистиллированной водой до 500 мл. На каждые 5 мл раствора добавляют 2 мл 8,5% раствора хлорида натрия, х мл 0,1 М соляной к-ты и (18—х) мл дистиллированной воды.
Для приготовления трис-буфера используют раствор а — 24,3 г трис-(гидроксиметил)-аминометана в 1 л дистиллированной воды и раствор б — 0,1 н. HCl.
При приготовлении любых Б. р. следует употреблять очень чистые исходные вещества. Способность Б. р. сопротивляться изменению pH определяется его буферной емкостью, измеряемой количеством грамм-эквивалентов сильной кислоты или сильной щелочи, к-рое необходимо добавить к 1 л Б. р., чтобы изменить его pH на единицу. При неизменной величине отношения концентраций компонентов Б. р. его буферная емкость возрастает с увеличением концентрации этих компонентов.
Значение Б. р. для мед. практики — см. Буферные системы.
Библиография: Калинин Ф. Л., Лобов В. П. и Жидков В. А. Справочник по биохимии, с. 882, Киев, 1971; Швабе К. Основы техники измерения pH, пер. с нем., М., 1962.
Физиология и нарушения кислотно-основного состояния (методические материалы к практическим и семинарским занятиям)
Информация
Справочное пособие содержит информацию о физиологии кислотно- основного состояния (КОС). Представлена информация о методах лабораторной диагностики нарушений КОС. Перечислены варианты нарушений и методы коррекции. Предназначается для врачей всех специальностей, курсантов ФПК и студентов медвузов.
Физиология кислотно-основного состояния
В норме сильных кислот образуется 50 – 100 ммоль/сутки. При избыточном образовании они вызывают тяжелые нарушения. Это происходит при анаэробном окислении глюкозы.
В норме окисление глюкозы происходит аэробно: С6Н12О2 + 6О2 = 6Н2О + 6СО2 + 38 АТФ
Рис. 1. Доставка 02 к тканям и первые стадии элиминации CO2
Рис. 2. В легких бикарбонат снова превращается в С02 и выводится
Транспорт кислорода из легких к тканям и из тканей к легким обусловлен изменениями, которые воздействуют на сродство кислорода к гемоглобину. На уровне тканей из-за снижения рН это сродство уменьшается (эффект Бора) и вследствие этого улучшается отдача кислорода. В крови легочных капилляров сродство гемоглобина к кислороду увеличивается из-за снижения рС02 и возрастания рН по сравнению с аналогичными показателями венозной крови, что приводит к повышению насыщения артериальной крови кислородом.
Первичные изменения КЩС и компенсаторные реакции
Что такое буфер в медицине
«Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, кафедра молекулярной фармакологии и радиобиологии, Москва, Россия
Водородный показатель (рН) основы топического лекарственного препарата: выбор оптимального значения и роль буферной системы
Журнал: Клиническая дерматология и венерология. 2016;15(2): 47-52
Духанин А. С. Водородный показатель (рН) основы топического лекарственного препарата: выбор оптимального значения и роль буферной системы. Клиническая дерматология и венерология. 2016;15(2):47-52.
Dukhanin A S. PH value of the base of topical drug product: the choice of the optimal value and the role of buffer system. Klinicheskaya Dermatologiya i Venerologiya. 2016;15(2):47-52.
https://doi.org/10.17116/klinderma201615247-52
«Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, кафедра молекулярной фармакологии и радиобиологии, Москва, Россия
При выборе оптимального значения водородного показателя (рН) топического лекарственного препарата должны учитываться три группы факторов: фармацевтические, фармакологические и факторы совместимости. Для поддержания стабильного значения рН в основу препарата вводят различные буферные системы, которые разделяются на монокомпонентные и двухкомпонентные. На примере топических препаратов, содержащих глюкокортикостероиды, рассмотрены оптимальные условия выбора и поддержания рН основы.
«Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, кафедра молекулярной фармакологии и радиобиологии, Москва, Россия
Важным фактором эффективности топического препарата является водородный показатель (рН). На выбор оптимального значения рН для топического препарата одновременно влияют несколько факторов:
— оптимальный диапазон рН для сохранения физической стабильности основы препарата;
— оптимальный диапазон рН для сохранения химической целостности действующих веществ (фармакологически активных соединений);
— оптимальный уровень рН для связывания активного вещества со своими молекулярными мишенями действия (кожа, бактерии, грибы) и проявления фармакологических свойств — противовоспалительного, антиаллергического, противозудного и антиэкссудативного эффектов, антибактериального или фунгицидного действия;
— соответствие рН наружного средства кислотности поверхности кожи.
В общем виде при выборе оптимального значения рН топического лекарственного препарата учитываются три группы факторов: фармацевтические, фармакологические и факторы совместимости (рис. 1). Последовательно остановимся на каждом из них.

Стабильность активного вещества, способность к длительному хранению без гидролиза, других химических реакций, разрушающих действующее начало препарата, напрямую зависит от значения рН основы препарата. Количественным критерием служит величина рКа фармакологического вещества, оптимальное значение рН препарата не должно сильно отличаться от рКа, так как это способствует снижению растворимости, нестабильности и химическому разрушению активных ингредиентов [1]. Так, для бетаметазона дипропионата оптимальный диапазон рН составляет 5—7 [2].
В случае комбинированных препаратов в расчет принимаются оптимальные условия для сохранения химической стабильности всех входящих в его состав активных компонентов. Например, для препарата Тридерм — глюкокортикостероида бетаметазона дипропионата, антимикотика клотримазола и антибиотика с бактерицидным эффектом гентамицина.
Фармакологические факторы
Действующие вещества наружных препаратов (глюкокортикостероиды, антибиотики, антимикотики) являются таргетными лекарственными веществами (от англ. target —мишень). Для проявления их противовоспалительной, антибактериальной или антимикотической активности лекарственное вещество должно найти и прочно связаться со своими молекулярными мишенями действия, расположенными в коже (внутриклеточные рецепторы глюкокортикоидных гормонов), в бактериальной или грибковой клетках. Эффективность образования комплекса лекарственного вещества и мишени, следовательно, терапевтическая эффективность препарата могут меняться в зависимости от рН. Так, для антибиотиков из группы аминогликозидов и макролидов показано достоверное снижение бактерицидной активности при уменьшении рН. Кислая среда существенно повышает минимальную ингибирующую концентрацию (МИК), что требует увеличение дозы антибиотика для проявления эквивалентной эффективности [3, 4]. Кислое значение рН (меньше 7,0) драматически снижает активность гентамицина: МИК при рН=5,0 в 70 раз выше, чем при pH=7,4 [5]. Оптимальный уровень рН для проявления антимикробных свойств антибиотиков, используемых в наружной терапии, составляет для эритромицина — 7,5—8,0; неомицина — 5,5—6,0; нитрофурантоина — 6,0; стрептомицина — 7,5—8,0.
Получены сведения, что антимикотический эффект препаратов менее выражен при кислом значении рН, адгезия клеток Candida максимальна при 37 °C и рН 6,0 [6].
Следовательно, эффективность составных компонентов топического препарата, чувствительных к изменению рН, зависит как от кислотности места их действия (поверхность кожи, эпидермис, дерма, гиподерма), так и рН наружного средства.
Факторы совместимости кожи и основы препарата
Учитывают такие параметры топического средства, как сохранение защитной и барьерной функции кожи, регуляция гидратации рогового слоя, отсутствие комедогенного действия, отсутствие аллергических реакций, соответствие рН наружного средства кислотности поверхности кожи [7]. Морфофункциональная совместимость топического препарата включает способность сохранять текстуру кожи, отсутствие комедогенного действия. Биологическая совместимость отражает свойства основы хорошо впитываться в кожу, не вызывать жирного блеска, быть удобной в применении, соответствовать рН водно-липидной мантии, учитывать возможность развития окклюзионного эффекта.
рН поверхности кожи создает оптимальные условия:
— для жизнеспособности клеток эпидермиса;
— для осуществления защитных свойств рогового слоя, в частности антимикробного свойства;
— для поддержания барьерных функций рогового слоя.
Кислотность поверхности кожи — важная физиологическая константа, наравне с температурой, концентрацией глюкозы и кислорода свидетельствующая о состоянии гомеостаза в организме. Отклонение значения рН может указывать на развитие патологических процессов в коже [8]. Так, повышение рН наблюдается при атопическом дерматите (увеличение рН в среднем 0,5 ед.), контактном дерматите, микозах. Показана корреляция между тяжестью заболевания и изменением рН поверхности кожи [9].
Уровень рН напрямую определяет активность водородных связей, которые влияют на:
— активность ферментов β-глюкоцереброзидазы и кислой сфингомиелиназы — ключевых ферментов, участвующих в регуляции проницаемости кожи [10];
— механизмы трансмембранного транспорта — систему антипорта Na + /H + в мембранах ламеллярных структур рогового слоя эпидермиса [11];
— пространственное строение сложноорганизованных структур, напрямую зависящих от рН — ДНК, биополимеров — клеточных мембран, везикул, бислойных структур водно-липидной мантии [12];
— антибактериальные свойства поверхности кожи (рис. 2).

Рост нормальной микробиоты кожи происходит при кислых значениях pH, в то время как для колонизации патогенных бактерий, таких как Staphylococcus aureus, оптимальным является нейтральное значение рН. Дермицидин (антимикробный пептид) отвечает за антимикробную активность секрета потовых желез в отношении различных патогенных микроорганизмов. При инкубации S. aureus с фракцией пота, содержащей дермицидин, бактерицидный эффект снижался с 90% в буфере с рН=5,5 до 60% в буфере с рН=6,5 [13]. Также отмечено снижение антибактериальной активности катионных биологически активных веществ, например, некоторых основных белков, вследствие уменьшения кислотности поверхности кожи. Нитраты, которые вырабатываются в потовых железах, метаболизируются бактериями до нитритов. Нитриты служат неспецифическим антибактериальным защитным механизмом, который активен при кислой реакции среды [14].
Буферная система топического препарата
Для поддержания определенной концентрации ионов водорода, т. е. определенной кислотности основы, в состав топических препаратов дополнительно вводят буферные системы.
В зависимости от химической природы буферные системы делят на:
— однокомпонентные (содержат одно соединение);
— двухкомпонентные (содержат два активных соединения).
Двухкомпонентные системы имеют более высокую буферную емкость, т. е. повышенную способность удерживать рН в заданном диапазоне.
Активизация микрофлоры на фоне применения топических глюкокортикостероидов является одним из факторов, ограничивающих как назначение, так и сроки применения [7]. В связи с этим особого внимания заслуживают основы глюкокортикостероидов, в состав которых включены буферные системы. В таблице приведены примеры буферных систем топических препаратов, содержащих глюкокортикоиды.

Добавление фосфорной кислоты в качестве второго компонента буферной системы значительно повышает буферную емкость, ее сопротивление изменению рН среды в щелочную сторону.
Более разнообразный состав буферной композиции в креме Тридерм, введение в ее состав второго компонента (фосфорная кислота) способствуют повышению антимикробных свойств поверхности кожи, что свидетельствует в пользу лекарственной формы препарата Тридерм.
Природные буферные системы кожи
Поверхность кожи в норме имеет кислую реакцию (в диапазоне значений рН=4,0–6,0), в то время как внутренняя среда организма поддерживается на уровне, близком к нейтральным величинам (рН=7,0—7,5). Это является причиной выраженного градиента рН (2—3 ед.) между рН рогового слоя и рН эпидермиса и дермы [10]. Повышение уровня рН способствует росту активности сериновой протеазы, калликреина 5 и 7, которые участвуют в десквамации и деградации корнеодесмосом [17].
Основными природными буферными системами внутриклеточной и межклеточной жидкости кожи являются бикарбонатная, фосфатная и белковая буферная система. Величина рН возрастает в направлении клетка—межклеточная среда—кровь. Таким образом, наибольшую буферную емкость имеет кровь, а наименьшую — внутриклеточная среда. Образуемые в клетках при метаболизме кислоты поступают в межклеточную жидкость тем легче, чем больше их образуется в клетках, так как избыток ионов водорода повышает проницаемость клеточной мембраны. В буферных свойствах межклеточной среды играет роль соединительная ткань, особенно коллагеновые волокна. На минимальное накопление кислот они реагируют набуханием, связывая ионы водорода межклеточной жидкости.
Итак, оптимальное значение рН основы топического препарата определяется составом основы и входящих в него фармакологически активных веществ, а также соответствием рН поверхности кожи. Поддержание рН основы препарата обеспечивает буферная система, которая может быть представлена одним (монокомпонентная) или двумя компонентами (двухкомпонентная). Двухкомпонентные системы имеют более высокую буферную емкость, т. е. повышенную способность удерживать рН в заданном диапазоне. Добавление фосфорной кислоты в качестве второго компонента буферной системы, с одной стороны, повышает ее сопротивление изменению рН кожи в щелочную сторону, с другой — способствует повышению антимикробных свойств поверхности кожи.
БУФЕР
Смотреть что такое «БУФЕР» в других словарях:
Буфер — Буфер: Буфер устройство, устанавливаемое на различных видах транспорта, служащее для гашения (амортизации) продольных ударных и сжимающих усилий. Буфер (железнодорожный) буфер на ж/д вагонах и локомотивах. Бампер буфер на автомобилях. Буфер… … Википедия
БУФЕР — англ. buffer, от to buff, толкать. Подушки, ослабляющие толчок при сближения двух вагонов. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. БУФЕР механизм, ослабляет силу… … Словарь иностранных слов русского языка
Буфер — (buffer) Компьютерная память, которая задействуется при передаче информации с одного устройства на другое, работающих с различной скоростью. Например, медленно работающий принтер имеет встроенный буфер, позволяющий ему соединяться с… … Словарь бизнес-терминов
Буфер — область памяти для временного хранения промежуточных данных. Буфер реализуется программно или аппаратно и используется для согласования скоростей обработки при обмене информацией между быстро и медленнодействующими устройствами. По английски:… … Финансовый словарь
БУФЕР — (англ. buffer от buff смягчать толчки), приспособление для смягчения ударов на транспортных средствах (локомотивах, вагонах и др.). Автомобильный буфер называется бампером … Большой Энциклопедический словарь
буфер — зад, задница, жопень, ягодицы, жопа, гидробуфер, бампер Словарь русских синонимов. буфер сущ., кол во синонимов: 8 • бампер (7) • … Словарь синонимов
БУФЕР — БУФЕР, буфера, мн. буфера, муж. (англ. buffer). Железный диск на концах вагона, снабженный пружиной, смягчающей взаимные толчки вагонов (ж. д.). || перен. То, что (или тот, кто) находится между сталкивающимися, борющимися сторонами (книжн.). Эта… … Толковый словарь Ушакова
БУФЕР — БУФЕР, а, мн. а, ов, муж. 1. У вагонов, локомотивов, автомобилей: специальное устройство для смягчения силы удара, толчка при столкновении. 2. перен. О том, кто (что) ослабляет конфликт, столкновение между двумя сторонами. Служить буфером кому… … Толковый словарь Ожегова
буфер — буфер. См. буферный раствор. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
буфер — – специальное устройство для смягчения силы удара. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
БУФЕР — обмена (обмана). Жарг. шк. Шутл. ирон. Буфетчица. (Запись 2003 г.) … Большой словарь русских поговорок


