Что такое неорганическая химия
Неорганическая химия
Неоргани́ческая хи́мия — раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим [1] ). Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными. [2] Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число неорганических веществ приближается к 400 тысячам.
Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.
В России исследованиями в области неорганической химии занимаются Институт неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН, Новосибирск), Институт общей и неорганической химии им. Н. С. Курнакова (ИОНХ РАН, Москва), Институт физико-химических проблем керамических материалов (ИФХПКМ, Москва), Научно-технический центр «Сверхтвердые материалы» (НТЦ СМ, Троицк) и ряд других учреждений. Результаты исследований публикуются в журналах («Журнал неорганической химии» и др.).
Содержание
История определения
Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH4OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.
Классификация химических элементов
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен [3] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и так далее). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Простые вещества
Состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). Все простые вещества в неорганической химии делятся на две большие группы: Металлы — Неметаллы.
Металлы
Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 [4] химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:
Таким образом, к металлам относится 96 элементов из всех открытых.
Неметаллы
Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их бо́льшую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. К неметаллам также относят водород и гелий.
Сложные вещества
Большую часть сложных неорганических веществ (то есть состоящих из двух и более химических элементов) можно разделить на следующие группы:
Оксиды
Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2. Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.
Со́ли — класс химических соединений, к которому относятся вещества, состоящие из катионов металла (или катионов аммония ; известны соли фосфония
или гидроксония
) и анионов кислотного остатка. Типы солей:
Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.
Основания
Основа́ния — класс химических соединений:
Кислоты
Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.
Также можно выделить следующие группы неорганических веществ: карбиды, нитриды, гидриды, интерметаллиды и другие, которые не укладываются в приведённую выше классификацию (более подробно см. Неорганическое вещество).
Карбиды
Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, в которых углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и тому подобные). Карбиды — тугоплавкие твёрдые вещества: карбиды бора и кремния (В4С и SiC), титана, вольфрама, циркония (TiC, WC и ZrC соответственно) обладают высокой твёрдостью, жаростойкостью, химической инертностью.
Нитриды
Нитри́ды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4). Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.
Гидриды
Интерметаллиды
Интерметалли́д (интерметаллическое соединение) — химическое соединение из двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой твёрдостью и высокой химической стойкостью. Очень часто интерметаллиды имеют более высокую температуру плавления, чем исходные металлы. Почти все интерметаллиды хрупки, так как связь между атомами в решётке становится ковалентной или ионной (например, в ауриде цезия CsAu), а не металлической. Некоторые из них имеют полупроводниковые свойства, причём, чем ближе к стехиометрии соотношение элементов, тем выше электрическое сопротивление. Никелид титана, известный под маркой «нитинол», обладает памятью формы — после закалки изделие может быть деформировано механически, но примет исходную форму при небольшом нагреве.
НЕОРГАНИЧЕСКАЯ ХИМИЯ
Неорганическая химия— раздел химии, который связан с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область химии охватывает все соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различия между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических). Число известных сегодня неорганических веществ приближается к 500 тысячам.
Теоретическим основанием неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Главной задачей неорганической химии является разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами.
Классификация химических элементов
Периодическая система химических элементов (таблица Менделеева) — классификация химических элементов, которая устанавливает зависимость различных свойств химических элементов от заряда атомного ядра. Система — это графическое выражение периодического закона, который был составлен русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и назывался «Естественная система элементов», который устанавливал зависимость свойств химических элементов от их атомной массы. Всего предложено несколько сотен вариантов изображения периодической системы, но в современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в некоторой степени подобные друг другу.
Простые вещества
Они состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: металлы и неметаллы. Для первых характерна металлическая связь, для вторых — ковалентная. Также выделяются две примыкающие к ним группы — металлоподобных и неметаллоподобных веществ. Существует такое явление как аллотропия, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента, но с разным строением кристаллической решетки; каждый из таких типов называется аллотропной модификацией.
Металлы
Металлы (от лат. metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 химических элементов, открытых на данный момент, к металлам относят:
Таким образом, к металлам относится 96 элементов из всех открытых.
Неметаллы
Неметаллы — химические элементы с типично неметаллическими свойствами, занимающие правый верхний угол Периодической системы элементов. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в соединениях: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По содержанию в земной коре неметаллы существенно различаются. Самыми распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, йод. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их бо́льшую способность для присоединения дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов.
Сложные вещества
Большую часть сложных неорганических веществ (то есть состоящих из двух и более химических элементов) можно разделить на следующие группы:
Репетитор по химии. Занятия проходят онлайн по Скайпу. По всем вопросам пишите в Ватсапп: +7 928 285 70 42
НЕОРГАНИЧЕСКАЯ ХИМИЯ
наука о хим. элементах и образуемых ими простых и сложных в-вах, за исключением орг. соединений.
Понятие «Н. х.» (минер. химия) появилось первоначально для обозначения в-в минер. происхождения.
Осн. задачи соврем. Н. х.: изучение строения, св-в и хим. р-ций простых в-в и соед., взаимосвязи строения со св-вами и реакц. способностью в-в, разработка методов синтеза и глубокой очистки в-в, общих методов получения неорганических материалов.
Важнейшие разделы Н. х.-теоретич., синтетич. и прикладная Н. х. По изучаемым объектам ее подразделяют на химию отдельных элементов, химию групп элементов в составе периодич. системы (химия щелочных металлов, щелочноземельных элементов, галогенов, халькогенов и др.), химию определенных соед. тех или иных элементов (химия силикатов, пероксидных соед. и др.), химию элементов, объединенных в группы по исторически сложившимся признакам (напр., химия редких элементов), химию близких по св-вам и применению в-в (химия тугоплавких в-в, интер-металлидов, полупроводников, энергонасыщенных соед., благородных металлов, неорг. полимеров и др.). Самостоят. раздел Н. х.-координац. химия, или химия координационных соединений. Нередко обособляют химию переходных элементов.
Границы между Н. х. и др. хим. науками часто условны или неопределенны. Одни и те же в-ва или р-ции м. б. объектами исследования разл. хим. дисциплин.
Как и мн. др. хим. науки, Н. х. неразрывно связана с физ. химией, к-рая может считаться теоретич. и методологич. основой совр. химии, с аналит. химией-одним из главных инструментов химии.
Н. х. отчасти пересекается с орг. химией, особенно с химией металлоорг. соед., бионеорг. химией и др.
Теоретич. представления Н. х. используют в геохимии, космохимии, химии твердого тела, химии высоких энергий, радиохимии, ядерной химии, в нек-рых разделах биохимии и агрохимии.
Прикладная часть Н. х. связана с хим. технологией, металлургией, галургией, электроникой, с добычей полезных ископаемых, произ-вом керамики, строительных, конструкционных, а также оптич. и др. неорг. материалов, с обеспечением работы энергетич. установок (напр., АЭС), с с. х-вом, с обезвреживанием пром. отходов, охраной природы и др.
История развития. История Н. х. тесно связана с общей историей химии, а вместе с ней-с историей естествознания и историей человеческой цивилизации. Составные разделы истории Н. х.-история открытия хим. элементов, история формирования осн. понятий о в-ве, история открытия и развития законов химии, в частности периодического закона Менделеева.
В период возникновения техн. химии (17 в.- 1-я пол. 18 в.) установлено существование фосфора, кобальта, платины и никеля. Были созданы произ-ва азотной, соляной и серной к-т, разл. солей (поваренная соль, квасцы, бура, нашатырь, сульфат цинка), минер. красителей, керамики.
Нач. 18 в. связано с распространением теории флогистона-некоего в-ва, якобы выделяемого при горении. Эта ошибочная теория оказала положит. влияние на развитие химии, впервые позволив рассматривать разл. хим. процессы с одной общей точки зрения.
М. В. Ломоносов и А. Лавуазье сформулировали закон сохранения массы при хим. р-циях. Лавуазье показал несостоятельность теории флогистона, дал определение хим. элемента (в-во, к-рое не м. б. разложено хим. способами), предложил впервые перечень известных тогда хим. элементов. Принципы хим. номенклатуры этого периода в осн. сохранились до нашего времени.
На основе работ Л. Гальвани и А. Вольта был открыт электрохим. ряд напряжений металлов.
Этапными для развития Н. х. явились работы И. Берце-лиуса, к-рый в 1814 опубликовал таблицу атомных масс. А. Авогадро и Ж. Гей-Люссак открыли газовые законы, П. Дюлонг и А. Пти нашли правило, связывающее теплоемкость с числом атомов в соединении, Г. И. Гесс-закон постоянства кол-ва теплоты (см. Гесса закон). Возникла атомно-мол. теория.
В 1807 Г. Дэви электрохимически разложил гидроксиды натрия и калия и ввел в практику новый метод выделения простых в-в; в 1834 М. Фарадей опубликовал осн. законы электрохимии (см. Фарадея законы).
В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными новые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутений, ниобий), с помощью введенного в практику спектр. анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов.
К кон. 1860-х гг. стало известно 63 хим. элемента и большое число разнообразных хим. соед., однако научная классификация элементов отсутствовала. Основой для систематики явился периодич. закон Менделеева, с помощью к-рого были исправлены атомные массы мн. элементов и предсказаны св-ва неизвестных в то время в-в. Послед. открытия галлия (П. Э. Лекок де Буабодран, 1875), скандия (Л. Нильсон, 1879), германия (К. А. Винклер, 1886), ланта-ноидов, благородных газов (У. Рамзай, 1894-98), первых радиоактивных элементов-полония и радия (М. Склодовс-кая-Кюри, П. Кюри, 1898) блестяще подтвердили периодич. закон. При получении астата, актиноидов, курчатовия, нильсбория и элементов с атомными номерами 106 и выше этот закон был использован на практике. Приоритет Менделеева в открытии периодич. закона, нек-рое время оспаривавшийся Л. Мейером, был закреплен в названии одного из искусств. элементов (менделевия).
Теория строения атома (Э. Резерфорд, 1911; Н. Бор, 1913), введение понятия атомного номера (Г. Мозли, 1914) позволили дать периодич. закону физ. обоснование.
В 1893 А. Вернер высказал идею пространств. строения комплексных соед. металлов, создал основы классификации координац. соединений.
Позднее в Н. х. стали использоваться такие понятия, как введенная Л. Полингом электроотрииательность, ионные и ковалентные радиусы (см. Атомные радиусы), степень окисления, к-ты и основания по Брёнстеду и по Льюису (см. Кислоты и основания). В 1927 И. И. Черняев открыл явление трансвлияния в комплексных соединениях. Достижения рус. и сов. школы химии комплексных соединений (Н. С. Курна-ков, Л. А. Чугаев, И. И. Черняев, О. Е. Звягинцев, А. А. Гринберг) были положены в основу методов аффинажа благородных металлов. Совр. период Н. х. отличается расширением ее теоретич. базы, резким увеличением кол-ва изучаемых объектов, применением физ., особенно спектроскопич., методов исследования и анализа, увеличением числа используемых сложных методов синтеза.
Химия большинства элементов в 20 в. интенсивно развивалась, однако нек-рые области Н. х. прогрессировали особенно быстро. Появились и новые быстро растущие направления. Х и м и я р е д к и х м е т а л л о в начала выделяться в самостоят. раздел Н. х. в 30-х гг. благодаря зарождению произ-ва редких металлов и росту их потребления, комплексному характеру мн. видов прир. сырья и общности технол. операций переработки сырья (см. Гидрометаллургия). Появление атомной энергетики, авиационно-космич. пром-сти и электроники повысили роль этой области Н. х.
Х и м и я г а л о г е н о в, особенно фтора, получила мощный импульс развития во 2-й пол. 20 в. в связи с развитием металлургии, атомной и ракетной техники, произ-в орг. в-в, полупроводниковых и др. материалов. Заметному увеличению числа исследований неорг. фторидов способствовало открытие в 1962 фторидов благородных газов. В 70-80-х гг. расширилось применение атомарных и ионизированных галогенов, каталитич. р-ций галогенирования. Многообразие соед. галогенов и широкий диапазон их св-в сделали эти соед. удобными объектами для изучения осн. задач Н. х.
Начало 2-й пол. 20 в. связано с возникновением х и м и и п о л у п р о в о д н и к о в (см. Полупроводники, Полупроводниковые материалы), а несколько более позднее время-с развитием планарной технологии интегральных схем. Перед Н. х. возникли задачи получения особо чистых в-в, что потребовало резкого улучшения методов очистки и анализа. Инструментю методы анализа в этой области Н. х. полностью вытеснили традиционные.
Х и м и я РЗЭ (см. Редкоземельные элементы) близка к химии нек-рых редких металлов и химии актиноидов, что связано с определенными аналогиями в электронном строении и хим. св-вах всех этих элементов и определяет их совместное присутствие в нек-рых прир. источниках. Уникальные св-ва РЗЭ были изучены и реализованы лишь начиная с 60-70-х гг. Особенностью этих элементов является близость их хим. и многих физ. св-в, что привело к необходимости преодоления трудностей при выделении, глубокой очистке и определении индивидуальных элементов. Интерес к этой области Н. х. возрастает в связи с открытием высокотемпературных оксидных сверхпроводников.
В 70-х гг. новый импульс развития получила х и м и я г и д р и д о в, особенно гидридов металлов и интерметаллич. соед. (см. Гидриды), в связи с перспективой их использования как источников топлива для автономных энергосистем.
Открытие, сделанное в 1986 И. Беднорцем и К. Мюллером, положило начало еще одной области Н. х. и химии твердого тела-х и м и и в ы с о к о т е м п е р а т у р н ы х с в е р х п р о в о д н и к о в (см. Сверхпроводники).
Большое значение придается спектрам в электромагн. диапазоне (для определения структуры в-в) и магн. св-вам в-в (в целях создания магн. материалов). Теоретич. Н. х. активно использует методы хим. термодинамики и хим. кинетики.
Теоретич. Н. х. изучает также закономерности образования дефектов кристаллич. решетки, влияние дефектов на св-ва в-в, исследует кинетику твердофазных процессов.
Нек-рые вопросы, разрабатываемые теоретич. Н. х., являются одновременно и проблемами физики и физ. химии. Напр., квантово-хим. описание электронной конфигурации атомов и ионов, проблемы происхождения хим. элементов и их превращений в космосе, создание теории высокотемпературной сверхпроводимости и др.
Методы синтеза неорганических соединений. Физ. и хим. св-ва, а также реакц. способность простых в-в и неорг. соед. изменяются в очень широких пределах. Поэтому для синтеза неорг. в-в используют широкий набор разл. методов (см. Неорганический синтез). В общем виде простейший синтез включает смешение реагентов, активацию смеси, собственно хим. р-цию, выделение из нее целевого продукта и очистку последнего.
Мн. методы синтеза специфичны. При получении тугоплавких соед. и материалов применяют методы порошковой технологии (см. Порошковая металлургия), реакц. спекания и химического осаждения из газовой фазы. Сферич. однородные частицы порошков получают плазменной обработкой или с помощью золь-гель процессов. Разработаны спец. методы выделения в-в в виде монокристаллов (см. Монокристаллов выращивание), монокристаллич. пленок, в т. ч. эпитаксиальных (см. Эпитаксия), и нитевидных кристаллов, волокон, а также в аморфном состоянии. Нек-рые р-ции проводят в условиях горения, напр. синтез тугоплавких соед. из смеси порошков простых в-в (см. Горение, Самораспространяющийся высокотемпературный синтез). Все более широкое применение в неорг. синтезе находит криогенная техника (см. Криохимия).
Прикладной частью Н. х. традиционно считается технология неорг. в-в. Она связана с крупномасштабными про-из-вами серной, соляной, фосфорной, азотной к-т, соды, аммиака, хлора, фтора, фосфора, а также солей натрия, калия, магния и др. (см. Галургия), диоксида углерода, водорода, разл. минер. удобрений и мн. др. в-в. Большая часть этих продуктов потребляется др. хим. произ-вами, металлургией и при получении конструкц. материалов.
Прикладная Н. х. играет существ. роль в развитии важнейших отраслей народного хозяйства. Так, в машиностроении и стр-ве широко используют материалы, получаемые из минер. сырья хим. методами. Это, напр., металлы и сплавы, минер. красители, твердые сплавы для режущего инструмента.
В таких отраслях пром-сти, как электроника, электротехника, приборостроение, применение новых неорг. материалов позволяет повысить техн. уровень произ-ва и выпускаемых товаров. Примерами являются в-ва и материалы для интегральных схем, телевизионных экранов, люминесцентных ламп, лазеров на кристаллах, волоконных световодов, сверхпроводниковых и магн. устройств.
В энергетике, помимо применения тугоплавких, жаростойких и жаропрочных конструкц. материалов, достижения Н. х. используются также для произ-ва активных в-в и электролитов в хим. источниках тока, высокотемпературных электролитов, в ядерном реактостроении, ядерной энергетике и произ-ве материалов для них (ядерного топлива, замедлителей нейтронов, конструкц. материалов). Развивается произ-во материалов для прямого преобразования солнечной и тепловой энергии в электрическую, материалов для МГД-генераторов, для преобразования, хранения и транспортирования энергии, в перспективе-для термоядерных реакторов. Создаются также термохим. циклы разложения воды, к-рые м. б. использованы в водородной энергетике.
Для с. х-ва ведется произ-во минер. удобрений и кормовых добавок, нек-рых видов пестицидов и консервантов кормов.
Возрастает роль Н. х. в решении проблем охраны окружающей среды и рационального природопользования. Все более глубоко и полно исследуется поведение разл. в-в в природе, прир. круговороты в-в, влияние хозяйств. деятельности человека на эти процессы. Разрабатываются новые технол. процессы, позволяющие снизить уровень нарушения экологич. равновесия в природе, сохранить прир. ландшафты при добыче и переработке полезных ископаемых (напр., в результате применения подземного выщелачивания). Решаются задачи резкого уменьшения потребления воды в пром-сти, снижения кол-ва отходов (см. Безотходные производства), повышения комплексности использования минер. сырья, более полного использования вторичных ресурсов. См. также Охрана природы.
Методы Н. х. и хим. технологии применяют для ликвидации вредных выбросов в разл. отраслях произ-ва (напр., в энергетике при сжигании угля), для превращения отходов др. отраслей в полезные продукты. Примерами являются изготовление строит. материалов из металлургич. шлаков, пром. переработка отработанного ядерного топлива.
Лит.: Менделеев Д. И., Основы химии, 13 изд., т. 1-2, М.-Л., 1947; Некрасов Б. В., Основы общей химии, 3 изд., т. 1-2, М., 1973; Реми Г., Курс неорганической химии, т. 1-2, М., 1972-74; Джуа М., История химии, пер. с итал., М., 1975; Дей М. К., Селбин Дж., Теоретическая неорганическая химия, пер. с англ., М., 1976; Полинг Л., Полинг П., Химия, пер. с англ., М., 1978; Коттон Ф., Уилкинсон Дж., Основы неорганической химии, пер. с англ., М., 1979; Карапетьянц М. X., Дракин С. И., Общая и неорганическая химия, М., 1981; Штрубе В., Пути развития химии, т. 1-2, пер. с нем., М., 1984; Хьюи Дж., Неорганическая химия. Строение вещества и реакционная способность, пер. с англ., М., 1987; Williams A. F., A theoretical approach to inorganic chemistry, В., 1979; Anorganische Chemie, Bd 1-2, В., 1980; Holle-man A. F., Wiberg E., Lehrbuch der anorganischen Chemie, B.-N.Y., 1985.
Г. А. Ягодин, Э. Г. Раков.