Что такое обратные числа 7 класс
Обратное число
Обра́тное число́ (обратное значение, обратная величина) — это число, на которое надо умножить данное число, чтобы получить единицу. Пара чисел, произведение которых равно единице, называются взаимно обратными.
Примеры: 5 и 1/5, −6/7 и −7/6, и
Для всякого числа а, не равного нулю, существует обратное 1/a.
Обратной величиной нуля является бесконечность.
Обратные дроби — это две дроби, произведение которых равно 1. Например, 3/7 и 7/3; 5/8 и 8/5 и т. д.
См. также
Полезное
Смотреть что такое «Обратное число» в других словарях:
ОБРАТНОЕ ЧИСЛО — число, произведение которого на данное число равно единице. Два таких числа называются взаимно обратными. Таковы, напр., 5 и 1/5, 2/3 и 3/2 и т. д … Большой Энциклопедический словарь
обратное число — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN inverse numberreciprocal number … Справочник технического переводчика
обратное число — число, произведение которого на данное число равно единице. Два таких числа называются взаимно обратными. Таковы, например, 5 и 1/5, 2/3 и 3/2 и т. д. * * * ОБРАТНОЕ ЧИСЛО ОБРАТНОЕ ЧИСЛО, число, произведение которого на данное число равно… … Энциклопедический словарь
Обратное число — число, произведение которого с данным числом равно единице. Два таких числа называются взаимно обратными. Таковы, например, 5 и а, не равного нулю, существует обратное … Большая советская энциклопедия
ОБРАТНОЕ ЧИСЛО — число, произведение к рого на данное число равно единице. Два таких числа наз. взаимно обратными. Таковы, напр., 5 и 1/5. 2/3 и 3/2 и т. д … Естествознание. Энциклопедический словарь
Число — У этого термина существуют и другие значения, см. Число (значения). Число основное понятие математики[1], используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей… … Википедия
Число (матем.) — см. также: Число (лингвистика) Число абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое … Википедия
Обратное закручивание воды при стоке — Обратное закручивание воды при стоке околонаучный миф, основанный на неверном применении эффекта Кориолиса к движению воды в водовороте, возникающему при её стоке в сливное отверстие раковины или ванны. Суть мифа состоит в том, что вода… … Википедия
ЧИСЛО ИРРАЦИОНАЛЬНОЕ — ЧИСЛО, ИРРАЦИОНАЛЬНОЕ, число, которое не может быть выражено в виде дроби. Примеры включают Ц2 и число p. Следовательно, иррациональные числа это числа с бесконечным числом (непериодических) знаков после запятой. (Однако обратное не является… … Научно-технический энциклопедический словарь
Обратное преобразование Лапласа — Преобразование Лапласа интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и … Википедия
Обратные числа
Что такое обратные числа? Как найти число, обратное данному?
Обратные числа (взаимно-обратные числа) — это два числа, произведение которых равно единице.
Обратное число существует для любого числа, кроме нуля.
Число, обратное 1 — это 1. Таким образом, единица — число, являющееся обратным самому себе.
В общем виде взаимно-обратные дроби можно представить как
натуральное число a и обратное ему число — как
Чтобы проверить, являются ли два числа обратными, надо найти их произведение. Если произведение равно единице, числа — взаимно-обратные, в противном случае числа обратными не являются.
Чтобы найти число, обратное данному, можно единицу разделить на данное число.
На практике обычно поступают проще.
Чтобы найти дробь, обратную обыкновенной дроби, числитель и знаменатель данной дроби меняют местами (дробь «переворачивают»).
Число, обратное натуральному, записывают как дробь с числителем 1 и знаменателем, равным данному натуральному числу.
Смешанные и десятичные дроби сначала переводят в обыкновенные дроби, а затем «переворачивают» и, если нужно, выделяют целую часть.
В алгебре по аналогии с взаимно-обратными числами вводится понятие взаимно-обратных выражений, в частности, обратных дробей.
Взаимно обратные числа, нахождение обратного числа.
Дадим определение и приведем примеры взаимно обратных чисел. Рассмотрим, как находить число, обратное натуральному числу и обратное обыкновенной дроби. Помимо этого, запишем и докажем неравенство, отражающее свойство суммы взаимно обратных чисел.
Взаимно обратные числа. Определение
Как найти число, обратное данному
Для натуральных чисел и обыкновенных дробей найти обратное число довольно просто. Можно сказать, даже очевидно. В случае нахождения числа, обратного иррациональному или комплексному числу, придется произвести ряд вычислений.
Рассмотрим наиболее часто встречающиеся на практике случаи нахождения обратного числа.
Число, обратное обыкновенной дроби
Число, обратное натуральному числу
Отдельное внимание стоит уделить единице, так как это единственное число, обратное число для которого равно ему самому.
Других пар взаимно обратных чисел, где обе составляющие равны, не существует.
Число, обратное смешанному числу
Число, обратное десятичной дроби
Десятичная дробь также можно представить в виде обыкновенной дроби. Нахождение обратного десятичной дроби числа сводится к представлению десятичной дроби в виде обыкновенной дроби и нахождению обратного числа для нее.
Рассмотрим еще один пример.
Пример. Нахождение числа, обратного десятичной дроби
Переводим десятичную дробь в обыкновенную:
Аналогично и для иррациональных чисел, отвечающим непериодическим бесконечным дробям, обратные числа записываются в виде дробных выражений.
Взаимно обратные числа с корнями
Обратимся к практике.
Пример. Взаимно обратные числа с корнями
Чтобы узнать, являются ли числа взаимно обратными, вычислим их произведение.
Произведение равно единице, значит, числа взаимно обратны.
Рассмотрим еще один пример.
Пример. Взаимно обратные числа с корнями
Взаимно обратные числа со степенями
Пример. Взаимно обратные числа со степенями
Взаимно обратные числа с логарифмами
Пример. Взаимно обратные числа с логарифмами
Число, обратное комплексному числу
Как уже отмечалось ранее, определение взаимно обратных чисел справедливо не только для действительных чисел, но и для комплексных.
Пример. Число, обратное комплексному числу
Помимо алгебраической формы, комплексное число может быть представлено в тригонометрической или показательной форме следующим образом:
z = r · cos φ + i · sin φ
Соответственно, обратное число будет иметь вид:
Рассмотрим примеры с представлением комплексных чисел в тригонометрической и показательной форме.
Пример. Найти число, обратное комплексному числу
Ответ: 1 2 · e i 2 π 5
Сумма взаимно обратных чисел. Неравенство
Существует теорема о сумме двух взаимно обратных чисел.
Сумма взаимно обратных чисел
Приведем доказательство теоремы. Как известно, для любых положительных чисел a и b среднее арифметическое больше или равно среднему геометрическому. Это можно записать в виде неравенства:
a + 1 a 2 ≥ a · 1 a a + 1 a ≥ 2
Что и требовалось доказать.
Приведем практический пример, иллюстрирующий данное свойство.
Пример. Найти сумму взаимно обратных чисел
Вычислим сумму чисел 2 3 и обратного ему числу.
2 3 + 3 2 = 4 + 9 6 = 13 6 = 2 1 6
Как и говорит теорема, полученное число больше двух.
Обратные Числа
и «перевернём» её, поменяв местами числитель и знаменатель.
Получим дробь.
называют обратной дроби.
опять «перевернуть», мы получим исходную дробь.
Поэтому такие дроби как
называют взаимно обратными.
Чтобы найти число обратное смешанному числу нужно:
записать его в виде неправильной дроби;
полученную дробь «перевернуть».
Пример. Найти число обратное смешанному числу:
Переворачиваем полученную дробь. Обратным числом для смешанного числа будет обыкновенная дробь:
Взаимно обратные числа обладают важным свойством.
Произведение взаимно обратных чисел равно единице.
Пример произведения обратных дробей.
Опираясь на свойство обратных дробей, можно дать определение взаимно обратных чисел.
Взаимно обратными числами называют два числа, произведение которых равно единице.
И так мы помним правило
Обратные числа (взаимно-обратные числа) — это два числа, произведение которых равно единице.
Примеры обратных чисел.
Обратное число существует для любого числа, кроме нуля.
Число, обратное 1 — это 1. Таким образом, единица — число, являющееся обратным самому себе.
В общем виде взаимно-обратные дроби можно представить как
натуральное число a и обратное ему число — как
Чтобы проверить, являются ли два числа обратными, надо найти их произведение. Если произведение равно единице, числа — взаимно-обратные, в противном случае числа обратными не являются.
Чтобы найти число, обратное данному, можно единицу разделить на данное число.
На практике обычно поступают проще.
Чтобы найти дробь, обратную обыкновенной дроби, числитель и знаменатель данной дроби меняют местами (дробь «переворачивают»).
Число, обратное натуральному, записывают как дробь с числителем 1 и знаменателем, равным данному натуральному числу.
Смешанные и десятичные дроби сначала переводят в обыкновенные дроби, а затем «переворачивают» и, если нужно, выделяют целую часть.
В алгебре по аналогии с взаимно-обратными числами вводится понятие взаимно-обратных выражений, в частности, обратных дробей.
Надеемся мы вам помогли, оставь отзыв и расскажи как ты понял( а) эту тему.
Презентация по математике «Взаимно обратные числа»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
«РАНО ИЛИ ПОЗДНО ВСЯКАЯ ПРАВИЛЬНАЯ МАТЕМАТИЧЕСКАЯ ИДЕЯ НАХОДИТ ПРИМЕНЕНИЕ В ТОМ ИЛИ ИНОМ ДЕЛЕ.» А.Н. КРЫЛОВ
ЧТОБЫ УЗНАТЬ ТЕМУ СЕГОДНЯШНЕГО УРОКА, НАДО РАЗГАДАТЬ АНАГРАММЫ! 1) ИЧЛАС ЧИСЛА 2) ЬДОРБ ДРОБЬ 3) ЫТЕАНБОР ОБРАТНЫЕ 4) ИНОМЗАВ ВЗАИМНО РАЗГАДАЛИ? А ТЕПЕРЬ УБЕРИТЕ ЛИШНЕЕ СЛОВО, ОСТАЛЬНЫЕ РАССТАВЬТЕ В НУЖНОМ ПОРЯДКЕ!
ВЗАИМНО ОБРАТНЫЕ ЧИСЛА
УМНОЖЕНИЕ ДРОБЕЙ ВЫЧИСЛИТЕ УСТНО: Молодцы!
А ТЕПЕРЬ ЗАДАНИЕ ПОСЛОЖНЕЕ! ВЫЧИСЛИТЕ: МОЛОДЦЫ!
ПИШЕМ ВМЕСТЕ СО МНОЙ! Если дробь «перевернуть», то есть поменять местами числитель и знаменатель, то получится дробь ДРОБЬ НАЗЫВАЮТ ОБРАТНОЙ К ДРОБИ
Внимание! ОБРАТНОЙ К ДРОБИ НАЗЫВАЕТСЯ ДРОБЬ
НАЗОВИТЕ ДРОБЬ, ОБРАТНУЮ К ДРОБИ: ПРО ТАКИЕ ДРОБИ МОЖНО ГОВОРИТЬ, ЧТО ЭТО ДРОБИ, ОБРАТНЫЕ ДРУГ К ДРУГУ!
КАК МОЖНО НАЗВАТЬ ДРОБИ? ОБРАТНЫЕ ДРУГ К ДРУГУ
Давайте посмотрим (пишем вместе со мной): ВНИМАНИЕ! ПРОИЗВЕДЕНИЕ ДРОБЕЙ, ОБРАТНЫХ ДРУГ К ДРУГУ, РАВНО ЕДИНИЦЕ! А ЧТО МЫ ЗНАЕМ О ЕДИНИЦЕ? ЗАПОМНИТЕ!
ПРОВЕРИМ, ЯВЛЯЮТСЯ ЛИ ВЗАИМНО ОБРАТНЫМИ ЧИСЛАМИ ДРОБИ: 1,25 И 0,8 ЗАПИШЕМ ИХ В ВИДЕ ОБЫКНОВЕННЫХ ДРОБЕЙ: ВЗАИМНО ОБРАТНЫЕ ЧИСЛА Иначе, можно проверить умножением:
РАБОТАЕМ С СИГНАЛЬНЫМИ КАРТОЧКАМИ ДА НЕТ ЯВЛЯЮТСЯ ЛИ ЧИСЛА ВЗАИМНО ОБРАТНЫМИ?
РАБОТАЕМ УСТНО: НАЙДИТЕ НЕИЗВЕСТНОЕ ЧИСЛО:
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-242526
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Минпросвещения планирует выделить «Профессионалитет» в отдельный уровень образования
Время чтения: 2 минуты
Рособрнадзор объявил сроки и формат ЕГЭ
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В МГПУ сформулировали новые принципы повышения квалификации
Время чтения: 4 минуты
ВПР для школьников в 2022 году пройдут весной
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.