Что такое несжимаемая жидкость

Несжимаемая жидкость

Полезное

Смотреть что такое «Несжимаемая жидкость» в других словарях:

несжимаемая жидкость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN incompressible fluidincompressible liquid … Справочник технического переводчика

несжимаемая жидкость — nespūdusis skystis statusas T sritis fizika atitikmenys: angl. incompressible liquid vok. inkompressible Flüssigkeit, f; unzusammendrückbare Flüssigkeit, f rus. несжимаемая жидкость, f pranc. liquide incompressible, m … Fizikos terminų žodynas

несжимаемая жидкость — Жидкость, плотность всех частиц которой неизменна … Политехнический терминологический толковый словарь

несжимаемая жидкость — несжимаемая жидкость — модель среды, плотность которой остаётся неизменной при изменении давления и является её физической характеристикой. Для Н. ж. скорость распространения малых возмущений (скорость звука) равна бесконечности, поэтому… … Энциклопедия «Авиация»

несжимаемая жидкость — несжимаемая жидкость — модель среды, плотность которой остаётся неизменной при изменении давления и является её физической характеристикой. Для Н. ж. скорость распространения малых возмущений (скорость звука) равна бесконечности, поэтому… … Энциклопедия «Авиация»

Идеальная несжимаемая жидкость — Механика сплошных сред … Википедия

Идеальная жидкость — Механика сплошных сред … Википедия

Эфир в физике — Содержание: 1) Э. до эпохи Декарта. 2) Э. картезианцев. 3) Э. Гюйгенса, Ньютона и позднейшего времени. 4) Свойства Э., как вида материи, согласно современным воззрениям. 5) Плотность Э. 6) Э. и тяготение. 7) Э. и молекулы обычных тел. 8) Инерция… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Эфир, в физике — Содержание: 1) Э. до эпохи Декарта. 2) Э. картезианцев. 3) Э. Гюйгенса, Ньютона и позднейшего времени. 4) Свойства Э., как вида материи, согласно современным воззрениям. 5) Плотность Э. 6) Э. и тяготение. 7) Э. и молекулы обычных тел. 8) Инерция… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

СМАЗКА — смазочный материал, а также нанесение и действие смазочного материала, уменьшающего силу трения между движущимися частями механизмов и их изнашивание. Смазочные материалы попутно могут выполнять также функции охлаждения, защиты от коррозии,… … Энциклопедия Кольера

Источник

несжимаемая жидкость

несжима́емая жи́дкость — модель среды, плотность которой остаётся неизменной при изменении давления и является её физической характеристикой. Для Н. ж. скорость распространения малых возмущений (скорость звука) равна бесконечности, поэтому любое возмущение, вносимое в какую-либо точку потока, мгновенно передаётся всему полю течения. В реальных жидкостях и газах скорость звука имеет конечное значение. В стационарном потоке достаточным условием для применения модели Н. ж. является условие малости скорости движения по сравнению со скоростью звука. В нестационарном потоке, кроме этого, необходимо, чтобы время, в течение которого звуковой сигнал пройдёт расстояние, равное характерному линейному размеру, было много меньше времени, в течение которого заметно изменяется движение среды. В силу сказанного модель Н. ж. свойственна многим прикладным задачам (движение кораблей в воде, полёт самолёта с малыми дозвуковыми скоростями, на режиме взлёта и посадки и т. д.), а её использование значительно упрощает их решение.

Поле течения идеальной Н. ж. (см. Идеальная жидкость) определяется неразрывности уравнением и Эйлера уравнениями; энергии уравнение выпадает из рассмотрения из-за постоянства удельной внутренней энергии среды. Для вязкой Н. ж. обычно предполагается постоянство коэффициента переноса (см. Переносные свойства среды); это позволяет сначала проинтегрировать совмещенное уравнение неразрывности и количества движения уравнение, а затем для найденных полей скоростей и давлений — уравнение притока теплоты, определяющее поле температуры. Однако для некоторых Н. ж. зависимость коэффициента переноса от температуры является очень сильной, поэтому при исследовании их движения эту систему уравнений необходимо решать совместно.

Полезное

Смотреть что такое «несжимаемая жидкость» в других словарях:

Несжимаемая жидкость — модель среды, плотность которой остаётся неизменной при изменении давления и является её физической характеристикой. Для Н. ж. скорость распространения малых возмущений (скорость звука) равна бесконечности, поэтому любое возмущение, вносимое в… … Энциклопедия техники

несжимаемая жидкость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN incompressible fluidincompressible liquid … Справочник технического переводчика

несжимаемая жидкость — nespūdusis skystis statusas T sritis fizika atitikmenys: angl. incompressible liquid vok. inkompressible Flüssigkeit, f; unzusammendrückbare Flüssigkeit, f rus. несжимаемая жидкость, f pranc. liquide incompressible, m … Fizikos terminų žodynas

несжимаемая жидкость — Жидкость, плотность всех частиц которой неизменна … Политехнический терминологический толковый словарь

несжимаемая жидкость — несжимаемая жидкость — модель среды, плотность которой остаётся неизменной при изменении давления и является её физической характеристикой. Для Н. ж. скорость распространения малых возмущений (скорость звука) равна бесконечности, поэтому… … Энциклопедия «Авиация»

Идеальная несжимаемая жидкость — Механика сплошных сред … Википедия

Идеальная жидкость — Механика сплошных сред … Википедия

Эфир в физике — Содержание: 1) Э. до эпохи Декарта. 2) Э. картезианцев. 3) Э. Гюйгенса, Ньютона и позднейшего времени. 4) Свойства Э., как вида материи, согласно современным воззрениям. 5) Плотность Э. 6) Э. и тяготение. 7) Э. и молекулы обычных тел. 8) Инерция… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Эфир, в физике — Содержание: 1) Э. до эпохи Декарта. 2) Э. картезианцев. 3) Э. Гюйгенса, Ньютона и позднейшего времени. 4) Свойства Э., как вида материи, согласно современным воззрениям. 5) Плотность Э. 6) Э. и тяготение. 7) Э. и молекулы обычных тел. 8) Инерция… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

СМАЗКА — смазочный материал, а также нанесение и действие смазочного материала, уменьшающего силу трения между движущимися частями механизмов и их изнашивание. Смазочные материалы попутно могут выполнять также функции охлаждения, защиты от коррозии,… … Энциклопедия Кольера

Источник

Сжимаемая и несжимаемая жидкости

Сжимаемая жидкость – модель жидкости, учитывающая действительно существующую сжимаемость всех реальных жидкостей. При исследовании движения сжимаемой жидкости плотность является функцией давления и температуры. Сжимаемая жидкость – основная модель жидкости, используемая в газовой динамике.

Несжимаемая жидкость – модель жидкости, плотность которой при изменении давления и температуры не изменяется. Эта модель используется для упрощения исследования течений в тех случаях, когда действительно имеющее место относительное изменение плотности реальной жидкости весьма мало (обычно менее 5 … 6 % ).

И сжимаемая и несжимаемая жидкости в общем случае могут быть как вязкими, так и невязкими.

Уравнения состояния

Для исследования сжимаемых течений уравнений движения (уравнений Навье – Стокса) и уравнения неразрывности недостаточно. В самом деле, изменения давления и плотности, происходящие в сжимаемых течениях, влекут за собой изменение температуры, что приводит к необходимости вводить в рассмотрение некоторые термодинамические соотношения. Одним из таких соотношений является уравнение состояния, связывающее между собой давление, плотность и температуру.

Связь между термодинамическими параметрами для реальных газов может быть установлена исходя из известных положений кинетической теории газов с помощью методов статистической физики, но ввиду сложности общего уравнения состояния и трудности определения входящих в него констант для описания термодинамических свойств сжимаемых газов обычно пользуются приближенными теоретическими и эмпирическими уравнениями.

В зависимости от того, какой вид уравнения состояния используется принято различать модели «совершенного газа» (очень часто его ещё называют «идеальным газом»), «газ Ван-дер-Ваальса» или «вандерваальсовского газ» и так называемого «реального газа». Очевидно, что в последнем случае «реальность» следует понимать лишь как более точное приближение в описание известных термодинамических свойств реальных газов, устанавливаемых, как правило, экспериментально.

p=ρRT,

которое достаточно хорошо отражает соотношение параметров большинства газов (азот, водород, воздух, кислород и др.) при умеренных давлениях (не выше 5 … 10 МПа) и положительных температурах.

В области высоких давлений и низких температур, близких к критической температуре газа уравнение Менделеева – Клапейрона не применимо, поскольку неточно отражает соотношение термодинамических параметров реального газа.

Совершенный газ – гипотетическая модель газа, молекулы которого представляются в виде абстрактных материальных точек, не имеющих физического объёма и взаимодействующих только при соударениях. Совершенный газ имеет постоянные теплоемкости Cp и Cv, показатель изоэнтропы k= Cp / Cv и молекулярную массу.

В практических расчетах часто используется уравнение состояния совершенного газа, «модифицированное» введением, так называемого, коэффициента сжимаемости z, величина которого зависит от давления и температуры:

Последнее выражение иногда ошибочно называют уравнением состояния реального газа.

Уравнение состояния, предложенное в 1873 г. голландским физиком Ван-дер-Ваальсом (Ян Дидерик Ван-дер-Ваальс *1837 †1923) по существу также является уточнением уравнения Менделеева – Клапейрона, но в отличие от последнего уравнение Ван-дер-Ваальса «работает» вблизи точек конденсации газа и даже удовлетворительно описывает связи для некоторых диапазонов жидкой фазы.

Уравнение Ван-дер-Ваальса, полученное на основе главным образом умозрительных качественных заключений, имеет следующий вид:

где α и β – константы, которые наряду с газовой постоянной R характеризуют индивидуальные свойства вещества. Величина параметра β интерпретируется как объём, занимаемый собственно молекулами газа; член α/υ 2 рассматривается как внутреннее давление в газе, обусловленное силами взаимодействия его молекул. Учет таких свойств реального газа как наличие межмолекулярного взаимодействия и объёма молекул, является причиной того, что очень часто это уравнение также ошибочно называют уравнением состояния реального газа.

Сжимаемость жидкости

Сжимаемость – это свойство жидкости изменять плотность (объём) при изменении давления и температуры. Для количественной оценки сжимаемости используются изотермический коэффициент сжимаемости βp и коэффициент температурного расширения βΤ. Причем, первый отражает относительное изменение плотности жидкости при изменении только давления (при T= Const), а второй – то же явление, но при изменении только температуры жидкости (при p= Const).

Для решения вопроса о необходимости учета сжимаемости при исследовании того или иного течения жидкости, т.е. для выбора модели – сжимаемой или несжимаемой жидкости, необходимо знать изменения давления и температуры в рассматриваемой области течения и оценить вызванное ими относительное изменение плотности. Обычно для многих задач прикладной газовой динамики, если они не связаны с исследованием пограничного слоя, учет температурного расширения жидкости не является актуальным; наибольший интерес представляет сжимаемость жидкости, обусловленная изменением давления.

Относительное изменение плотности ∆ρ/ρ при заданном изменении давления ∆p пропорционально изотермическому коэффициенту сжимаемости βp и обратно пропорционально модулю упругости õ, поскольку βp и õпо определению являются величинами обратными друг другу:

∆ρ/ρ = βp ∆ p = ∆ p / õ– закон Гука для жидкости.

Сжимаемость свойственна всем жидкостям (и капельным и газам), однако её количественное проявление будет различным в зависимости от физических свойств среды. Капельные жидкости малосжимаемы или практически несжимаемы, поскольку их модули упругости достаточно велики (например, для воды õ= 2∙ 10 9 Па).

По сравнению с капельными жидкостями сжимаемость газов очень велика: при атмосферном давлении и изотермическом процессе сжимаемость воздуха в 20 тысяч раз больше сжимаемости воды.

При изотермическом процессе течения газа:

T= Const ; p/ ρ =RT=Const; dp/d ρ =p/ ρ

т.е. сжимаемость газов тем больше, чем меньше давление. При атмосферном давлении модуль упругости воздуха õ = p =B= 10 5 Па, что в 2·10 4 раза меньше величины модуля упругости воды (см. выше).

При изоэнтропийном процессе течения газа:

p/ ρ k = Const; dp/d ρ =kp/ ρ

т.е. сжимаемость газов определяется не только давлением, но и показателем изоэнтропы k, уменьшаясь с его увеличением.

Течение жидкости допустимо рассматривать как несжимаемое до тех пор, пока относительное изменение плотности ∆ρ/ρ остается весьма малым, т.е. ∆ρ/ρ 2 /2; поэтому ∆ρ/ρ≈ ρW 2 /2õ. Таким образом, течение жидкости можно рассматривать как несжимаемое до тех пор, пока динамическое давление остается весьма малым по сравнению с модулем упругости.

Если ввести в рассмотрение скорость звука a, которая согласно формуле Лапласа определяется равенством a 2 = õ , то условие ∆ρ/ρ 2 /2õ ≈ (W/a) 2 /2 2 /2 2 /2=0.3 2 /2≈0.05,

12. Вязкость и внутреннее трение в жидкости. Закон трения Ньютона

Вязкостью называется свойство всех реальных жидкостей (капельных и газов) оказывать сопротивление относительному сдвигу (деформации сдвига), т. е. изменению формы жидких частиц (но не их объёма).

Вязкость жидкости обусловлена взаимодействием молекул и проявляется только при движении жидкости, точнее, – при деформации жидкости (частиц жидкости). Если жидкость движется параллельными слоями (ламинарное течение), причем при этом происходит относительное скольжение соседних слоёв жидкости относительно друг друга (течение чистого сдвига), т.е. имеет место деформация чистого сдвига, то касательные напряжения между слоями могут быть описаны законом трения Ньютона.

В общем случае вязкость (величина μ) зависит от природы жидкости, её агрегатного состояния, температуры и давления. Однако зависимость от давления в широком диапазоне изменения давления для большинства реальных газов и капельных жидкостей оказывается слабой и ей можно пренебречь. Чем больше μ, тем больше вязкость жидкости.

Трение в капельных жидкостях заключается, главным образом, в преодолении сил взаимодействия между молекулами слоёв, смещающихся относительно друг друга. С увеличением температуры капельной жидкости увеличивается частота колебаний молекул и силы взаимодействия между ними уменьшаются, а вместе с ними уменьшается и вязкость. Наоборот, в газах с увеличением температуры вязкость возрастает, поскольку трение в газах обусловлено переносом направленного количества движения молекул при их тепловом хаотическом движении: с ростом температуры газа скорость хаотического движения молекул и число соударений возрастают, а вместе с этим увеличиваются перенос количества движения и вязкость газа.

Необходимо отметить, что рассмотренные выше слоистая модель течения и выведенный на её основе закон трения описывают весьма простой частный случай движения жидкости. Обобщением закона трения Ньютона на общий случай произвольного пространственного движения вязкой жидкости является закон трения Стокса, согласно которому напряжения, вызванные вязкостью, пропорциональны соответствующим скоростям деформации(тензор вязких напряжений пропорционален тензору скоростей деформаций).

G При турбулентных режимах течения коэффициент трения приобретает совершенно иное содержание в соответствии с другим, значительно более сложным механизмом внутреннего трения, обусловленным наличием турбулентных пульсаций.

Источник

Изучение свойств воды, текучести, несжимаемости и способов их применения в жизни человека. Создание модели гидравлического экскаватора

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Дата публикации: 29.01.2018 2018-01-29

Статья просмотрена: 5487 раз

Библиографическое описание:

Кучковский, А. Е. Изучение свойств воды, текучести, несжимаемости и способов их применения в жизни человека. Создание модели гидравлического экскаватора / А. Е. Кучковский, О. Ю. Ушакова, Г. И. Спиридонова. — Текст : непосредственный // Юный ученый. — 2018. — № 1 (15). — С. 50-57. — URL: https://moluch.ru/young/archive/15/1102/ (дата обращения: 12.12.2021).

Актуальность. В первую очередь стоит сказать, что жидкости — это то с чем мы постоянно сталкиваемся в процессе нашей повседневной жизни. Даже первое восприятие окружающего мира сводится к тому, что все вокруг состоит из твердых тел и жидкостей. Мы встречаемся с одними видами жидкостей, наблюдаем другие, но при этом каждого из нас иногда посещает мысль о том какими свойствами обладает та или иная жидкость. Самой распространенной и известной жидкостью на планете является вода, она нам всем известна, но в то же время обладает многими очень интересными свойствами, на которые в обыденной жизни мы не обращаем внимания.

С древних времен человек использует различные свойства воды в своей жизни, строя каналы, водяные мельницы, водоподъемные колеса для орошения полей и многое другое.

И в наше время очень многие устройства и машины используют в своей работе эти свойства жидкости. Так что же это за свойства, жидкости, которые на протяжении многих веков помогают человеку?

Цель. В этой работе я хотел бы рассмотреть два свойства жидкости, такие как текучесть — способность неограниченное количество раз менять свою форму и не сжимаемость — способность сохранять объем при внешнем воздействии на примере воды и изучить их применение в современном мире. А также сделать модель экскаватора для наглядной демонстрации этих свойств воды.

Задачи:

Вода — удивительное вещество

Вода — одно из самых удивительных веществ в природе.

Чистая вода прозрачна, бесцветна, не имеет вкуса и запаха. Обладает свойством текучести. Принимает форму сосуда. Воду в жидком состоянии практически невозможно сжать. Она может перейти из жидкого состояния в газообразное или твердое и наоборот.

Вода — наиболее распространенное, доступное и дешевое вещество. Именно доступность и незаменимость воды обусловила ее широкое применение в быту, промышленности и сельском хозяйстве, медицине — во всех сферах человеческой деятельности. Трудно вспомнить, где вода не применяется.

Вода — это самая большая и удобная дорога. По ней день и ночь плывут суда, везут разные грузы, пассажиров. Вода ещё и кормит, являясь средой обитания промысловых животных. Вода “добывает” электрический ток, работая на гидроэлектростанциях. В медицине вода — растворитель, лекарственное средство, средство санитарии и гигиены. В сельском хозяйстве вода — «транспортное средство» питательных веществ к клеткам растений и животных, участник процесса фотосинтеза, регулятор температуры живых организмов. Объемы воды, которые затрачиваются для полива сельскохозяйственных растений, при кормлении животных, птицы, не уступают объемам, используемым промышленностью. В быту вода — средство санитарии и гигиены, участник химических реакций, протекающих при приготовлении пищи. Вода моет всех людей, машины, дороги.

Основным свойством жидкости, отличающим её от твердых тел, является способность неограниченно менять форму, даже при сколь угодно малых по силе воздействий, практически сохраняя при этом объём.

В своей работе я хочу изучить два свойства воды: текучесть и не сжимаемость.

Что же такое — текучесть?

Если открыть дома на кухне кран, из него потечет вода. Что значит — потечет? Одним из основных свойств воды является способность изменять форму, не дробясь на части, это и называется текучестью.

Проведем эксперимент, подтверждающий текучесть воды.

Для более удобного наблюдения окрасим воду пищевым красителем. Наполним стакан до половины водой. Вода принимает форму стакана.

Наклоним стакан. Мы видим, что вода изменила форму.

Для второй части эксперимента нам понадобится два разных по форме сосуда. Наполним один сосуд водой и поднимем его над вторым. Попробуем перелить воду из одного сосуда в другой.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Рис. 1. Мы видим, что вода перелилась из первого сосуда во второй и приняла форму второго сосуда

Вывод: вода обладает свойством текучести.

Данным свойством воды люди пользуются с древнейших времен. Еще в древней Римской империи, для обеспечения городов водой люди строили акведуки (от латинских слов aqua — вода и duco — веду) — большие и протяженные системы каналов, с помощью которых вода из рек поступала в город.

Несжимаемость — еще одно увлекательное свойство воды. Что значит — несжимаемость? Есть вещества, при воздействии на которые какой-то силой изменяют свой объем, эти вещества называются сжимаемыми. Вода в отличии от них как бы сильно мы на нее не воздействовали (давили) не меняет свой объем. Это свойство воды и называется несжимаемостью.

Проведем эксперимент, подтверждающий данное утверждение. Для этого нам понадобится медицинский шприц (без иголки). Выдвинем поршень шприца, и наберем полный шприц воздуха, закроем пальцем отверстие для иголки и попробуем надавить на поршень. Мы видим, что у нас получилось задвинуть поршень практически на половину. У нас получилось сжать воздух, находящийся внутри шприца. Т. е. воздух изменил свой объем на 2,5 мл, он стал занимать меньше места в шприце под воздействием силы нашего нажатия.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Теперь наберем полный шприц воды и заткнув отверстие попробуем нажать на поршень. Как бы сильно мы не давили, у нас не получается изменить объем воды. Это и есть несжимаемость. В данном эксперименте мы подтвердили еще одно удивительное свойство воды.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Использование свойств воды в современном мире

Обладая текучестью, вода легко принимает любую форму, и это позволяет транспортировать воду по трубам от источников воды до крана в доме, и используя свойства не сжимаемости при помощи гидронасосов поднимать воду на самые высокие этажи зданий. В ходе работы я узнал, как устроен гидронасос и где он применяется.

Я посетил насосную многоэтажного здания и посмотрел, как работают насосы водоснабжения и отопления. При помощи этих насосов и системы труб в здание подается питьевая вода и вода в батареи отопления. Благодаря чему в доме есть вода и тепло.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Это самые распространенные в мире способы использования текучести и несжимаемости воды.

Так же не сжимаемость и текучесть жидкости очень широко используется в современных автомобилях, от самых маленьких до больших грузовиков. Только вместо воды в них используется специальная жидкость.

В ходе изучения свойств воды я посетил автомастерскую и познакомился с использованием свойств текучести и не сжимаемости в тормозах автомобиля.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Рис. 5. Гидротормоз автомобиля

Еще один способ использования изучаемых свойств воды который применяется в современном мире — это гидроэлектростанции. Гидроэлектростанции вырабатывают электрическую энергию. Вода протекает через лопасти турбины крутит их. Вращаясь лопасти турбины крутят генератор, который и вырабатывает электрический ток. Гидроэлектростанции являются самым экологически чистым способом получения большого количества электроэнергии.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Рис. 6. Как устроена гидроэлектростанция

Гидроэлектростанции широко применяются в нашей республике для выработки электроэнергии. В Казахстане 18 различных гидроэлектростанций. Гидроэлектростанции бывают большие и малые. Большие гидроэлектростанции есть в Восточно-Казахстанской области на реке Иртыш. Самая большая гидроэлектростанция — Шульбинская. Вырабатываемой ей электроэнергии хватить для целого города. В Алматинской области тоже есть гидроэлектростанции. Если вы когда-нибудь ездили на Капчагайское водохранилище, то наверняка видели большой мост через реку Или. Это и есть Капчагайская гидроэлектростанция. В городе Алматы тоже есть гидроэлектростанции. На реках Большая Алматинка и Малая Алматинка построен каскад из 11 малых гидроэлектростанций, которые вырабатывают электрическую энергию для города. Электрическая энергия, вырабатываемая этими гидроэлектростанциями, освещает в том числе и нашу школу.

Я решил создать действующую модель экскаватора, на примере которой продемонстрировать изучаемые свойства воды. Вся работа по созданию модели состояла из трех основных этапов: разработка модели на бумаге, с использование чертежей; подбор инструментов, необходимых для изготовления модели экскаватора, изучение техники безопасности при работе с ними и подготовка необходимых деталей и экскаватора; сборка и испытание модели.

Этап первый — Разработка модели на бумаге.

В процессе подготовки деталей модели на бумаге я посетил стройку и посмотрел, как работает экскаватор. Были подготовлены чертежи деталей экскаватора, которые нам понадобятся и определен список материалов и деталей для модели. Для изготовления экскаватора мне понадобились — шприцы медицинские объемом 5 и 10 миллилитров, система для капельницы медицинская, винты диаметром 3 миллиметра, гайки и шайбы к ним, доска для изготовления основания, лист пластика для изготовления стрелы экскаватора, подшипник для поворотного механизма, медная проволока толщиной 1 миллиметр, клей, лист пластика толщиной 1 миллиметр для изготовления деталей стрелы, пластиковые хомуты для крепления шприцов.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Рис. 7. Чертеж деталей стрелы экскаватора

После подготовки чертежа, детали стрелы экскаватора были вырезаны из бумаги, и я начал собирать модель из бумаги, для того что бы проверить подходят ли детали друг к другу. Сборка осуществлялась при помощи клея и скрепок.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Этап второй — Подбор инструментов, необходимых для изготовления модели экскаватора, изучение техники безопасности при работе с ними

Убедившись, что все детали стрелы экскаватора подходят к друг другу, я составил список инструментов необходимых для изготовления модели.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Подготовив все необходимые инструменты, я приступил к изучению техники безопасности при работе с ними.

Этап третий — Подготовка необходимых деталей экскаватора; сборка и испытание модели

После изучения техники безопасности и работы с инструментами, я приступил к сборке модели экскаватора. Первым шагом разметил места, где будет установлен подшипник для поворотного механизма, и шприцы, управляющие работой экскаватора. При помощи дрели просверлил крепежные отверстия для поворотного механизма и отверстия для крепления шприцов. Прикрепил подшипник, на котором будет вращаться стрела экскаватора к станине. Собрал поворотный механизм при помощи винтов из ранее вырезанных деталей, и прикрепил его к подшипнику. Собрал стрелу из деталей, вырезанных из пластика, и закрепил ее на собранный поворотный механизм. У меня получилась собранная модель экскаватора, стрела, закрепленная на поворотном механизме, установленном на станине.

Я приступил к следующему этапу сборки — установки гидравлической системы управления экскаватором.

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

Что такое несжимаемая жидкость. Смотреть фото Что такое несжимаемая жидкость. Смотреть картинку Что такое несжимаемая жидкость. Картинка про Что такое несжимаемая жидкость. Фото Что такое несжимаемая жидкость

В ходе работы я изучил некоторые свойства воды, и на практике проверил как они работают. Изучил применение этих свойств человеком в повседневной жизни, познакомился с новыми для меня устройствами и инструментами.

Вода это всем известное вещество, обладающее уникальными свойствами, позволяющими использовать ее в самых различных областях. При подготовке своей работы я понял, что даже в известных мне вещах скрыты удивительные секреты.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *